Skip to main content

Phototransduction in Rods and Cones

  • Chapter
  • First Online:
Vertebrate Photoreceptors

Abstract

Light is detected by visual pigment, and this detection signal is converted to an electrical signal in the photoreceptor cell. In vertebrates, there are two classes of photoreceptors, rods and cones, and they respond to light by membrane hyperpolarization. The mechanism that produces a hyperpolarizing light response, the phototransduction cascade consisting of a series of enzymatic reactions, is now well understood in rods. Rods and cones function under different light conditions. Rods are highly light sensitive, so that they are functional in very dim light. Cones are less light sensitive and they are functional in daylight. Thanks to these two classes of cells, our vision covers a light intensity range more than 108 fold from the darkness under starlight to dazzling brightness at high noon on a tropical island. In addition to the difference in light sensitivity, the time required for recovery of a hyperpolarizing response to a flash of light is much shorter in cones than in rods. This higher time resolution in cones makes it possible to detect an object moving quickly in daylight. In cones, the phototransduction cascade is similar to that in rods. The differences in light sensitivity and time resolution between rods and cones could, therefore, stem from differences in the efficiencies of reactions or the lifetime of an active species in the cascade. This chapter describes the similarities and the differences in the phototransduction cascade between rods and cones studied biochemically in carp (Cyprinus carpio).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angleson JK, Wensel TG (1993) A GTPase-accelerating factor for transducin, distinct from its effector cGMP phosphodiesterase, in rod outer segment membranes. Neuron 11:939–949

    Article  PubMed  CAS  Google Scholar 

  • Arinobu D, Tachibanaki S, Kawamura S (2010) Larger inhibition of visual pigment kinase in cones than in rods. J Neurochem 115:259–268

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Woodruff ML, Chen FS et al (2010) Replacing the rod with cone transducin α subunit decreases sensitivity and accelerates response decay. J Physiol (Lond) 588:3231–3241

    Article  CAS  Google Scholar 

  • Choe HW, Kim YJ, Park JH et al (2011) Crystal structure of metarhodopsin II. Nature (Lond) 471:651–655

    Article  CAS  Google Scholar 

  • Cornwall MC, Fain GL (1994) Bleached pigment activates transduction in isolated rods of the salamander retina. J Physiol (Lond) 480:261–279

    CAS  Google Scholar 

  • Deng W-T, Sakurai K, Liu J et al (2009) Functional interchangeability of rod and cone transducin α-subunits. Proc Natl Acad Sci USA 106:17681–17686

    Article  PubMed Central  PubMed  Google Scholar 

  • Dizhoor AM, Ray S, Kumar S et al (1991) Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251:915–918

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE (2000) George Wald in Biographical Memoirs, vol. 78 (2000), pp 298–317. http://books.nap.edu/openbook.php?record_id=9977&page=298

  • Dumke CL, Arshavsky VY, Calvert PD et al (1994) Rod outer segment structure influences the apparent kinetic parameters of cyclic GMP phosphodiesterase. J Gen Physiol 103:1071–1098

    Article  PubMed  CAS  Google Scholar 

  • Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature (Lond) 313:310–313

    Article  CAS  Google Scholar 

  • Fung BKK, Stryer L (1980) Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc Natl Acad Sci USA 77:2500–2504

    Article  CAS  Google Scholar 

  • Gillespie PG, Beavo JA (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. J Biol Chem 263:8133–8141

    PubMed  CAS  Google Scholar 

  • Gray-Keller MP, Detwiler PB (1994) The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 13:849–861

    Article  PubMed  CAS  Google Scholar 

  • Harosi FI (1975) Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol 66:357–382

    Article  PubMed  CAS  Google Scholar 

  • Haynes LW, Yau KW (1990) Single-channel measurement from the cyclic GMP-activated conductance of catfish retinal cones. J Physiol (Lond) 429:451–481

    CAS  Google Scholar 

  • He W, Cowan CW, Wensel TG (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20:95–102

    Article  PubMed  Google Scholar 

  • Hubbard R (1977) Preface to the English translations of Boll’s on the anatomy and physiology of the retina and of Kühne’s chemical processes in the retina. Vision Res 17:1247–1248

    Article  Google Scholar 

  • Kawamura S (1993) Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature (Lond) 362:855–857

    Article  CAS  Google Scholar 

  • Kawamura S, Murakami M (1991) Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature (Lond) 349:420–423

    Article  CAS  Google Scholar 

  • Kawamura S, Tachibanaki S (2008) Rod and cone photoreceptors: molecular basis of the difference in their physiology. Comp Biochem Physiol A Mol Integr Physiol 150:369–377

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Tachibanaki S (2012) Explaining the functional differences of rods versus cones. WIREs Membr Transp Signal 1:675–683

    Article  CAS  Google Scholar 

  • Kefalov V, Fu Y, Marsh-Armstrong N et al (2003) Role of visual pigment properties in rod and cone phototransduction. Nature (Lond) 425:526–531

    Article  CAS  Google Scholar 

  • Kennedy MJ, Lee KA, Niemi GA et al (2001) Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation. Neuron 31:87–101

    Article  PubMed  CAS  Google Scholar 

  • Koshitani Y, Tachibanaki S, Kawamura S (2014) Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones. J Biol Chem 289:2651–2657

    Google Scholar 

  • Krispel CM, Chen D, Melling N et al (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51:409–416

    Article  PubMed  CAS  Google Scholar 

  • Leskov IB, Klenchin VA, Handy JW et al (2000) The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27:525–537

    Article  PubMed  CAS  Google Scholar 

  • Luo DG, Xue T, Yau KW (2008) How vision begins: an odyssey. Proc Natl Acad Sci USA 105:9855–9862

    Article  PubMed Central  PubMed  Google Scholar 

  • Lyubarsky AL, Chen C, Simon MI et al (2000) Mice lacking G-protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J Neurosci 20:2209–2217

    PubMed  CAS  Google Scholar 

  • Miki N, Keirns JJ, Marcus FR et al (1973) Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc Natl Acad Sci USA 70:3820–3824

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nikonov SS, Daniele LL, Zhu X et al (2005) Photoreceptors of Nrl−/− mice coexpress functional S- and M-cone opsins having distinct inactivation mechanisms. J Gen Physiol 125:287–304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nikonov SS, Kholodenko R, Lem J et al (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J Gen Physiol 127:359–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Noel JP, Hamm HE, Sigler PB (1993) The 2.2 Ã… crystal structure of transducin-alpha complexed with GTP gamma S. Nature (Lond) 366:654–663

    Article  CAS  Google Scholar 

  • Okano T, Fukada Y, Shichida Y et al (1992) Photosensitivities of iodopsin and rhodopsins. Photochem Photobiol 56:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Subbaraya I, Gorczyca WA et al (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Rich ED, Varnum MD (2004) Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 42:401–410

    Article  PubMed  CAS  Google Scholar 

  • Picones A, Korenbrot JI (1994) Analysis of fluctuations in the cGMP-dependent currents of cone photoreceptor outer segments. Biophys J 66:360–365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pugh EN, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. Handbk Biol Phys 3:183–255

    Article  CAS  Google Scholar 

  • Rinner O, Makhankov YV, Biehlmaier O, Neuhauss SC (2005) Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron 47:231–242

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Onishi A, Imai H et al (2007) Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. J Gen Physiol 130:21–40

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimauchi-Matsukawa Y, Aman Y, Tachibanaki S et al (2005) Isolation and characterization of visual pigment kinase-related genes in carp retina: Polyphyly in GRK1 subtypes, GRK1A and 1B. Mol Vis 11:1220–1228

    PubMed  CAS  Google Scholar 

  • Slep KC, Kercher MA, He W et al (2001) Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Ã…. Nature (Lond) 409:1071–1077

    Article  CAS  Google Scholar 

  • Standfuss J, Edwards PC, D’Antona A et al (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature (Lond) 471:656–660

    Article  CAS  Google Scholar 

  • Tachibanaki S, Tsushima S, Kawamura S (2001) Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses. Proc Natl Acad Sci USA 98:14044–14049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tachibanaki S, Arinobu D, Shimauchi-Matsukawa Y et al (2005) Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. Proc Natl Acad Sci USA 102:9329–9334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tachibanaki S, Yonetsu S, Fukaya S et al (2012) Low activation and fast inactivation of transducin in carp cones. J Biol Chem 287:41186–41194

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takemoto N, Tachibanaki S, Kawamura S (2009) High cGMP synthetic activity in carp cones. Proc Natl Acad Sci USA 106:11788–11793

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomita T (1965) Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol 30:559–566

    Article  PubMed  CAS  Google Scholar 

  • Toyoda J, Nosaki H, Tomita T (1969) Light-induced resistance changes in single photoreceptors of Necturus and gekko. Vision Res 9:453–463

    Article  PubMed  CAS  Google Scholar 

  • Weiss ER, Ducceschi MH, Horner TJ, Li A et al (2001) Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 21:9175–9184

    PubMed  CAS  Google Scholar 

  • Yau KW, Nakatani K (1984) Electrogenic Na–Ca exchange in retinal rod outer segment. Nature (Lond) 311:661–663

    Article  CAS  Google Scholar 

  • Yau K-W, Nakatani K (1985) Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature (Lond) 317:252–255

    Article  CAS  Google Scholar 

  • Zhong H, Molday LL, Molday RS et al (2002) The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature (Lond) 420:193–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kawamura, S., Tachibanaki, S. (2014). Phototransduction in Rods and Cones. In: Furukawa, T., Hurley, J., Kawamura, S. (eds) Vertebrate Photoreceptors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54880-5_2

Download citation

Publish with us

Policies and ethics