Skip to main content

Otolith

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear

Abstract

Otoliths or otoconia are located on the otolithic or otoconial membrane of both the utricle and the saccule. The utricle and the saccule detect linear acceleration in the horizontal and vertical planes, respectively. The otoconial membrane is divided into three layers: the subcupular meshwork, the gelatinous layer, and the otoconial layer. Otoconia are embedded in the loose filament network of the otoconial layer. Numerous proteins and genes are known to be related to otolith and otoconium formation. Otoconin 90 is the main core glycoprotein of otoconia for mammals and birds. Alpha-tectorin is needed for the normal formation of both the gelatinous layer and the otoconia as a whole. Otogelin and otoancorin provide instructions for the assembly and adhesion of the otoconial membrane proteins to the sensory epithelium. Factors affecting the structure of otoliths include drugs such as aminoglycosides, aging, and hypergravity. The interdependence of otoconia and semicircular canals is suggested, indicating the unrecognized importance of otoconia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wersall J, Engstrom H, Hjorth S. Fine structure of the guinea-pig macula utriculi; a preliminary report. Acta Oto-Laryngol Suppl. 1954;116:298–303.

    Article  CAS  Google Scholar 

  2. Schessel DA, Ginzberg R, Highstein SM. Morphophysiology of synaptic transmission between type I hair cells and vestibular primary afferents. An intracellular study employing horseradish peroxidase in the lizard, Calotes versicolor. Brain Res. 1991;544(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  3. Jones TA, Jones SM, Hoffman LF. Resting discharge patterns of macular primary afferents in otoconia-deficient mice. J Assoc Res Otolaryngol. 2008;9(4):490–505. doi:10.1007/s10162-008-0132-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Spoendlin HH, Schuknecht HF, Graybiel A. Ultrastructure of the otolith organs in squirrel monkeys after exposure to high levels of gravitoinertial force. Aerospace Med. 1965;36:497–503.

    CAS  PubMed  Google Scholar 

  5. Hughes I, Thalmann I, Thalmann R, Ornitz DM. Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res. 2006;1091(1):58–74. doi:10.1016/j.brainres.2006.01.074.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lins U, Farina M, Kurc M, Riordan G, Thalmann R, Thalmann I, et al. The otoconia of the guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. J Struct Biol. 2000;131(1):67–78. doi:10.1006/jsbi.2000.4260.

    Article  CAS  PubMed  Google Scholar 

  7. Clendenon SG, Shah B, Miller CA, Schmeisser G, Walter A, Gattone 2nd VH, et al. Cadherin-11 controls otolith assembly: evidence for extracellular cadherin activity. Dev Dyn. 2009;238(8):1909–22. doi:10.1002/dvdy.22015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kozlowski DJ, Whitfield TT, Hukriede NA, Lam WK, Weinberg ES. The zebrafish dog-eared mutation disrupts eya1, a gene required for cell survival and differentiation in the inner ear and lateral line. Dev Biol. 2005;277(1):27–41. doi:10.1016/j.ydbio.2004.08.033.

    Article  CAS  PubMed  Google Scholar 

  9. Kwak SJ, Phillips BT, Heck R, Riley BB. An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle. Development. 2002;129(22):5279–87.

    Google Scholar 

  10. Morsli H, Tuorto F, Choo D, Postiglione MP, Simeone A, Wu DK. Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development. 1999;126(11):2335–43.

    Google Scholar 

  11. Lundberg YW, Zhao X, Yamoah EN. Assembly of the otoconia complex to the macular sensory epithelium of the vestibule. Brain Res. 2006;1091(1):47–57. doi:10.1016/j.brainres.2006.02.083.

    Article  CAS  PubMed  Google Scholar 

  12. Verpy E, Leibovici M, Petit C. Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals. Proc Natl Acad Sci U S A. 1999;96(2):529–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wang Y, Kowalski PE, Thalmann I, Ornitz DM, Mager DL, Thalmann R. Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proc Natl Acad Sci U S A. 1998;95(26):15345–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pote KG, Hauer 3rd CR, Michel H, Shabanowitz J, Hunt DF, Kretsinger RH. Otoconin-22, the major protein of aragonitic frog otoconia, is a homolog of phospholipase A2. Biochemistry. 1993;32(19):5017–24.

    Article  CAS  PubMed  Google Scholar 

  15. Takemura T, Sakagami M, Nakase T, Kubo T, Kitamura Y, Nomura S. Localization of osteopontin in the otoconial organs of adult rats. Hear Res. 1994;79(1–2):99–104.

    Article  CAS  PubMed  Google Scholar 

  16. Balsamo G, Avallone B, Del Genio F, Trapani S, Marmo F. Calcification processes in the chick otoconia and calcium binding proteins: patterns of tetracycline incorporation and calbindin-D28K distribution. Hear Res. 2000;148(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Deans MR, Peterson JM, Wong GW. Mammalian Otolin: a multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein Otoconin-90 and Cerebellin-1. PLoS One. 2010;5(9):e12765. doi:10.1371/journal.pone.0012765.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rau A, Legan PK, Richardson GP. Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J Comp Neurol. 1999;405(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  19. Legan PK, Rau A, Keen JN, Richardson GP. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem. 1997;272(13):8791–801.

    Article  CAS  PubMed  Google Scholar 

  20. Kozel PJ. Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+−ATPase Isoform 2. J Biol Chem. 1998;273(30):18693–6. doi:10.1074/jbc.273.30.18693.

    Article  CAS  PubMed  Google Scholar 

  21. Everett LA, Morsli H, Wu DK, Green ED. Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci U S A. 1999;96(17):9727–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet. 2001;10(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  23. Hughes I, Blasiole B, Huss D, Warchol ME, Rath NP, Hurle B, et al. Otopetrin 1 is required for otolith formation in the zebrafish Danio rerio. Dev Biol. 2004;276(2):391–402. doi:10.1016/j.ydbio.2004.09.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Simmler MC, Cohen-Salmon M, El-Amraoui A, Guillaud L, Benichou JC, Petit C, et al. Targeted disruption of otog results in deafness and severe imbalance. Nat Genet. 2000;24(2):139–43. doi:10.1038/72793.

    Article  CAS  PubMed  Google Scholar 

  25. Zwaenepoel I, Mustapha M, Leibovici M, Verpy E, Goodyear R, Liu XZ, et al. Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proc Natl Acad Sci U S A. 2002;99(9):6240–5. doi:10.1073/pnas.082515999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Harada Y, Sugimoto Y. Metabolic disorder of otoconia after streptomycin intoxication. Acta Oto-Laryngol. 1977;84(1–2):65–71.

    Article  CAS  Google Scholar 

  27. Takumida M, Zhang DM, Yajin K, Harada Y. Effect of streptomycin on the otoconial layer of the guinea pig. J Oto Rhino Laryngol. 1997;59(5):263–8.

    CAS  Google Scholar 

  28. Ross MD, Peacor D, Johnsson LG, Allard LF. Observations on normal and degenerating human otoconia. Ann Otol Rhinol Laryngol. 1976;85(3 pt 1):310–26.

    CAS  PubMed  Google Scholar 

  29. Vibert D, Kompis M, Hausler R. Benign paroxysmal positional vertigo in older women may be related to osteoporosis and osteopenia. Ann Otol Rhinol Laryngol. 2003;112(10):885–9.

    PubMed  Google Scholar 

  30. Anken RH, Kappel T, Rahmann H. Morphometry of fish inner ear otoliths after development at 3 g hypergravity. Acta Oto Laryngol. 1998;118(4):534–9.

    Article  CAS  Google Scholar 

  31. Sondag HN, De Jong HA, Van Marle J, Willekens B, Oosterveld WJ. Otoconial alterations after embryonic development in hypergravity. Brain Res Bull. 1996;40(5–6):353–6. discussion 7.

    Article  CAS  PubMed  Google Scholar 

  32. Beraneck M, Lambert FM. Impaired perception of gravity leads to altered head direction signals: what can we learn from vestibular-deficient mice? J Neurophysiol. 2009;102(1):12–4. doi:10.1152/jn.00351.2009.

    Article  CAS  PubMed  Google Scholar 

  33. Harrod CG, Baker JF. The vestibulo ocular reflex (VOR) in otoconia deficient head tilt (het) mutant mice versus wild type C57BL/6 mice. Brain Res. 2003;972(1–2):75–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Tona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Tona, Y., Taura, A. (2014). Otolith. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics