Skip to main content

Spiral Ganglion Cell and Auditory Neuron

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 1017 Accesses

Abstract

Auditory nerve is a bundle of bipolar auditory neurons forming synapses peripherally with hair cells and centrally with cochlear nucleus cells. Spiral ganglion cells are the cell bodies of auditory neurons. The auditory neurons commonly degenerate both when hair cells are damaged initially and when axons of auditory nerve are injured primarily. Auditory neuropathic type auditory nerve degeneration, selective auditory neuronal degeneration with sparing of hair cells, exists much more than once thought. This pathological situation may become most suitable for cell transplantation intervention because survived hair cells can provide trophic factors to donor cells. The interface between the PNS (peripheral nervous system) and the CNS (central nervous system) portions is called the transitional zone (TZ). TZ may come to be a barrier against cell migration and centrally growing neurites from the distal side of TZ are sensitive to the repellent effects of astrocytes in the CNS portion of auditory nerve. It was revealed that glial scar is induced in the auditory nerve and/or cochlea nucleus regions not only in primary but also secondary auditory nerve degenerations. As glial scar strongly inhibits neuronal regeneration, our future approach to restore hearing should include a tactics to overcome inhibitory glial scar as in CNS neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sekiya T, Kojima K, Matsumoto M, Ito J. Replacement of diseased auditory neurons by cell transplantation. Front Biosci. 2008;13:2165–76.

    Article  CAS  PubMed  Google Scholar 

  2. Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their tar-gets. Annu Rev Neurosci. 2002;25:51–101. doi:10.1146/annurev.neuro.25.112701.142849.

  3. Gillespie PG. Myosin I and adaptation of mechanical transduction by the inner ear. Philos Trans R Soc Lond B Biol Sci. 2004;359(1452):1945–51. doi:10.1098/rstb.2004.1564.

  4. Simmons DD. Development of the inner ear efferent system across vertebrate species. J Neurobiol. 2002;53(2):228–50.

    Article  PubMed  Google Scholar 

  5. Sekiya T, Kojima K, Matsumoto M, Holley MC, Ito J. Rebuilding lost hearing using cell trans-plantation. Neurosurgery. 2007;60(3):417–33; discussion 33. doi:10.1227/01.NEU.0000249189.46033.4200006123-200703000-00001.

  6. Needham K, Minter RL, Shepherd RK, Nayagam BA. Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opin Biol Ther. 2013;13(1):85–101. doi:10.1517/14712598.2013.728583.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fraher JP. The transitional zone and CNS regeneration. J Anat. 2000;196(Pt 1):137–58.

    PubMed  Google Scholar 

  8. Obersteiner H, Redlich E. Uber Wesen und Pathogenese der tabischen Hinterstrangsdegeneration. Arb Neurol Inst Wien Univ. 1894;2:158–72.

    Google Scholar 

  9. Sekiya T, Matsumoto M, Kojima K, Ono K, Kikkawa YS, Kada S, et al. Mechanical stress-induced reactive gliosis in the auditory nerve and cochlear nucleus. J Neurosurg. 2011;114(2):414–25. doi:10.3171/2010.2.JNS091817.

    Article  PubMed  Google Scholar 

  10. Tarlov I. Structure of the nerve root. II. Differentiation of sensory from motor roots; observations on identification of function in roots of mixed cranial nerves. Arch Neurol Psychiatry. 1937;37:1338–55.

    Article  Google Scholar 

  11. Shi F, Edge AS. Prospects for replacement of auditory neurons by stem cells. Hear Res. 2013;297:106–12. doi:10.1016/j.heares.2013.01.017.

  12. Hu Z, Zhang B, Luo X, Zhang L, Wang J, Bojrab D, 2nd et al. The astroglial reaction along the mouse cochlear nerve following inner ear damage. Otolaryngol Head Neck Surg. 2013. doi:10.1177/0194599813512097.

  13. Hu Z, Ulfendahl M, Olivius NP. Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve. Brain Res. 2004;1026(1):68–73. doi:10.1016/j.brainres.2004.08.013.

  14. Palmgren B, Jin Z, Jiao Y, Kostyszyn B, Olivius P. Horseradish peroxidase dye tracing and embryonic statoacoustic ganglion cell transplantation in the rat auditory nerve trunk. Brain Res. 2011;1377:41–9. doi:10.1016/j.brainres.2010.12.078.

  15. Sekiya T, Kojima K, Matsumoto M, Kim TS, Tamura T, Ito J. Cell transplantation to the auditory nerve and cochlear duct. Exp Neurol. 2006;198(1):12–24.

    Article  PubMed  Google Scholar 

  16. Kozlova EN, Seiger A, Aldskogius H. Human dorsal root ganglion neurons from embryonic donors extend axons into the host rat spinal cord along laminin-rich peripheral surroundings of the dorsal root transitional zone. J Neurocytol. 1997;26(12):811–22.

    Article  CAS  PubMed  Google Scholar 

  17. Tong M, Brugeaud A, Edge AS. Regenerated synapses between postnatal hair cells and auditory neurons. J Assoc Res Otolaryngol. 2013;14(3):321–9. doi:10.1007/s10162-013-0374-3.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Defourny J, Lallemend F, Malgrange B. Structure and development of cochlear afferent innervation in mammals. Am J Physiol Cell Physiol. 2011;301(4):C750–61. doi:10.1152/ajpcell.00516.2010

  19. Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res. 1994;75(1–2):131–44.

    Article  CAS  PubMed  Google Scholar 

  20. Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC, et al. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci. 2004;24(40):8651–61. doi:10.1523/JNEUROSCI.0733-04.2004.

    Article  CAS  PubMed  Google Scholar 

  21. Pirvola U, Ylikoski J. Neurotrophic factors during inner ear development. Curr Top Dev Biol. 2003;57:207–23.

    Article  CAS  PubMed  Google Scholar 

  22. Fritzsch B, Pirvola U, Ylikoski J. Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications. Cell Tissue Res. 1999;295(3):369–82.

    Article  CAS  PubMed  Google Scholar 

  23. Wheeler EF, Bothwell M, Schecterson LC, von Bartheld CS. Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: quantitative analysis in developing rats. Hear Res. 1994;73(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  24. Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI. Auditory neuropathy. Brain. 1996;119(Pt 3):741–53.

    Article  PubMed  Google Scholar 

  25. Perez H, Vilchez J, Sevilla T, Martinez L. Audiologic evaluation in Charcot-Marie-tooth disease. Scand Audiol Suppl. 1988;30:211–3.

    CAS  PubMed  Google Scholar 

  26. Satya-Murti S, Cacace A, Hanson P. Auditory dysfunction in Friedreich ataxia: result of spiral ganglion degeneration. Neurology. 1980;30(10):1047–53.

    Article  CAS  PubMed  Google Scholar 

  27. Nelson EG, Hinojosa R. Aplasia of the cochlear nerve: a temporal bone study. Otol Neurotol. 2001;22(6):790–5.

    Article  CAS  PubMed  Google Scholar 

  28. Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN. Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol. 2011;12(6):711–7. doi:10.1007/s10162-011-0283-2.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci. 2009;29(45):14077–85. doi:10.1523/JNEUROSCI.2845-09.2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mahmud MR, Khan AM, Nadol Jr JB. Histopathology of the inner ear in unoperated acoustic neuroma. Ann Otol Rhinol Laryngol. 2003;112(11):979–86.

    PubMed  Google Scholar 

  31. Perez de Moura LF. Inner ear pathology in acoustic neurinoma. Arch Otolarngol. 1967;85:125–33.

    Google Scholar 

  32. Suga F, Lindsay JR. Inner ear degeneration in acoustic neurinoma. Ann Otol Rhinol Laryngol. 1976;85(3 pt 1):343–58.

    CAS  PubMed  Google Scholar 

  33. Matsumoto M, Sekiya T, Kojima K, Ito J. An animal experimental model of auditory neuropathy induced in rats by auditory nerve compression. Exp Neurol. 2008;210(1):248–56. doi:10.1016/j.expneurol.2007.11.006.

  34. Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson SL, Kuhn S et al. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature. 2012;490(7419):278–82. doi:10.1038/nature11415.

  35. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A. 2008;105(9):3581–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pekny M. Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. Prog Brain Res. 2001;132:23–30.

    Article  CAS  PubMed  Google Scholar 

  37. Liu PH, Yang LH, Wang TY, Wang YJ, Tseng GF. Proximity of lesioning determines response of facial motoneurons to peripheral axotomy. J Neurotrauma. 2006;23(12):1857–73. doi:10.1089/neu.2006.23.1857.

    Article  PubMed  Google Scholar 

  38. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416(6881):636–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuji Sekiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sekiya, T., Hiraumi, H. (2014). Spiral Ganglion Cell and Auditory Neuron. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics