Skip to main content

Cell Therapy

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 1010 Accesses

Abstract

Sensorineural hearing loss is one of the most common disabilities worldwide. In most cases, hearing loss in humans is believed to be caused by loss or dysfunction of hair cells in the cochlea, and when they are lost, hair cells cannot spontaneously regenerate, which enforce difficulty to cure most cases of severe or profound hearing loss. To date, cochlear implantation is the only way to rehabilitate hearing function in patients with profound hearing loss; however, normal hearing is not restored even with the best outcomes, in particular, in terms of music appreciation. Therefore, an alternative strategy would be much expected for the treatment on profound hearing loss. In this chapter, we will discuss on current understanding of hair cell biology as well as the initial studies aiming at transplanting cells into the inner ear for hair cell replacement. In subsequent part, we will highlight challenges for cell therapy for hair cell regeneration and discuss a couple of topics for cell transplantation into the inner ear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulehlova L, Voldrich L, Janisch R. Correlative study of sensory cell density and cochlear length in humans. Hear Res. 1987;28(2–3):149–51.

    Article  CAS  PubMed  Google Scholar 

  2. Curcio CA, Sloan Jr KR, Packer O, Hendrickson AE, Kalina RE. Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science. 1987;236(4801):579–82.

    Article  CAS  PubMed  Google Scholar 

  3. Kolb H. Facts and figures concerning the human retina. In: Kolb H, Fernandez E, Nelson R, editors. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City: University of Utah Health Sciences Center; 1995. http://www.ncbi.nlm.nih.gov/books/NBK11556/. Accessed 5 July 2007.

  4. Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol. 2002;12(13):1106–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Merchant S, Nadol J. Schuknecht’s pathology of the ear. USA: PMPH; 2010.

    Google Scholar 

  6. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med. 2005;11(3):271–6. doi:10.1038/nm1193.

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med. 2003;9(10):1293–9. doi:10.1038/nm925.

    Article  CAS  PubMed  Google Scholar 

  8. White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature. 2006;441(7096):984–7. doi:10.1038/nature04849.

    Article  CAS  PubMed  Google Scholar 

  9. Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the cochlea. Acta Otolaryngol. 2001;121(2):140–2.

    Article  CAS  PubMed  Google Scholar 

  10. Tateya I, Nakagawa T, Iguchi F, Kim TS, Endo T, Yamada S, et al. Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport. 2003;14(13):1677–81. doi:10.1097/01.wnr.0000088600.22893.ec.

    Article  PubMed  Google Scholar 

  11. Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, et al. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res. 2007;232(1–2):29–43. doi:10.1016/j.heares.2007.06.007.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Iguchi F, Nakagawa T, Tateya I, Kim TS, Endo T, Taniguchi Z, et al. Trophic support of mouse inner ear by neural stem cell transplantation. Neuroreport. 2003;14(1):77–80. doi:10.1097/01.wnr.0000050714.17082.9b.

    Article  PubMed  Google Scholar 

  13. Hakuba N, Hata R, Morizane I, Feng G, Shimizu Y, Fujita K, et al. Neural stem cells suppress the hearing threshold shift caused by cochlear ischemia. Neuroreport. 2005;16(14):1545–9.

    PubMed  Google Scholar 

  14. Sakamoto T, Nakagawa T, Endo T, Kim TS, Iguchi F, Naito Y, et al. Fates of mouse embryonic stem cells transplanted into the inner ears of adult mice and embryonic chickens. Acta Otolaryngol Suppl. 2004;551:48–52.

    Article  PubMed  Google Scholar 

  15. Kojima K, Murata M, Nishio T, Kawaguchi S, Ito J. Survival of fetal rat otocyst cells grafted into the damaged inner ear. Acta Otolaryngol Suppl. 2004;551:53–5.

    Article  PubMed  Google Scholar 

  16. Revoltella RP, Papini S, Rosellini A, Michelini M, Franceschini V, Ciorba A, et al. Cochlear repair by transplantation of human cord blood CD133+ cells to nod-scid mice made deaf with kanamycin and noise. Cell Transplant. 2008;17(6):665–78.

    Article  PubMed  Google Scholar 

  17. Sullivan JM, Cohen MA, Pandit SR, Sahota RS, Borecki AA, Oleskevich S. Effect of epithelial stem cell transplantation on noise-induced hearing loss in adult mice. Neurobiol Dis. 2011;41(2):552–9. doi:10.1016/j.nbd.2010.11.001.

    Article  PubMed  Google Scholar 

  18. Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development. 1999;126(8):1581–90.

    CAS  PubMed  Google Scholar 

  19. Mooney DJ, Vandenburgh H. Cell delivery mechanisms for tissue repair. Cell Stem Cell. 2008;2(3):205–13. doi:10.1016/j.stem.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  20. Bogaerts S, Douglas S, Corlette T, Pau H, Saunders D, McKay S, et al. Microsurgical access for cell injection into the mammalian cochlea. J Neurosci Meth. 2008;168(1):156–63. doi:10.1016/j.jneumeth.2007.09.016.

    Article  Google Scholar 

  21. Coleman B, Hardman J, Coco A, Epp S, de Silva M, Crook J, et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant. 2006;15(5):369–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sekiya T, Kojima K, Matsumoto M, Kim TS, Tamura T, Ito J. Cell transplantation to the auditory nerve and cochlear duct. Exp Neurol. 2006;198(1):12–24. doi:10.1016/j.expneurol.2005.11.006.

    Article  PubMed  Google Scholar 

  23. Praetorius M, Vicario I, Schimmang T. Efficient transfer of embryonic stem cells into the cochlea via a non-invasive vestibular route. Acta Otolaryngol. 2008;128(7):720–3. doi:10.1080/00016480701714236.

    Article  PubMed  Google Scholar 

  24. Teesalu T, Sugahara KN, Ruoslahti E. Mapping of vascular ZIP codes by phage display. Meth Enzymol. 2012;503:35–56. doi:10.1016/B978-0-12-396962-0.00002-1.

    Article  CAS  PubMed  Google Scholar 

  25. Mohit E, Rafati S. Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol Immunol. 2013;56(4):599–611. doi:10.1016/j.molimm.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  26. Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 2011;1810(3):317–29. doi:10.1016/j.bbagen.2010.05.004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yamada T, Ueda M, Seno M, Kondo A, Tanizawa K, Kuroda S. Novel tissue and cell type-specific gene/drug delivery system using surface engineered hepatitis B virus nano-particles. Curr Drug Targets Infect Disord. 2004;4(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  28. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell. 2010;141(4):704–16. doi:10.1016/j.cell.2010.03.035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature. 2013;500(7461):217–21. doi:10.1038/nature12298.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. NIDCD. Cochlear Implants. 2013. http://www.nidcd.nih.gov/health/hearing/pages/coch.aspx. Accessed 14 Feb 2014.

  31. Lezaic L, Haddad F, Vrtovec B, Wu JC. Imaging Cardiac stem cell transplantation using radionuclide labeling techniques: clinical applications and future directions. Methodist Debakey Cardiovasc J. 2013;9(4):218–22.

    PubMed Central  PubMed  Google Scholar 

  32. Bos C, Delmas Y, Desmouliere A, Solanilla A, Hauger O, Grosset C, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology. 2004;233(3):781–9. doi:10.1148/radiol.2333031714.

    Article  PubMed  Google Scholar 

  33. Nejadnik H, Henning TD, Castaneda RT, Boddington S, Taubert S, Jha P, et al. Somatic differentiation and MR imaging of magnetically labeled human embryonic stem cells. Cell Transplant. 2012;21(12):2555–67. doi:10.3727/096368912X653156.

    Article  PubMed  Google Scholar 

  34. Zhao Y, Bower AJ, Graf BW, Boppart MD, Boppart SA. Imaging and tracking of bone marrow-derived immune and stem cells. Meth Mol Biol. 2013;1052:57–76. doi:10.1007/7651_2013_28.

    Article  Google Scholar 

  35. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, et al. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature. 2014;505(7485):641–7. doi:10.1038/nature12968.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Okano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Okano, T. (2014). Cell Therapy. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_24

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics