Skip to main content

Dedifferentiation-Mediated Regeneration

  • Chapter
  • First Online:
Book cover Regenerative Medicine for the Inner Ear

Abstract

In several nonmammalian species natural regeneration occurs via dedifferentiation, where terminally differentiated cells revert back to a developmentally earlier stage. However, in mammals, once lost most terminally differentiated cells including cochlear hair cells do not regenerate. In this section, we introduce a novel strategy for hair cell regeneration in the mammalian inner ear, in which residual supporting cells are reprogrammed to otic progenitor cells that redifferentiate into hair cells. Induced pluripotent stem cell transcription factors (iPS cell TFs) and/or epigenetic modifications that intervene DNA methylation and histone acetylation are promising options to activate a cochlear supporting cell’s endogenous regenerative potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rose SM. Dedifferentiation in the regenerating amphibian limb. Anat Rec. 1947;99(4):568.

    CAS  PubMed  Google Scholar 

  2. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90. doi:10.1126/science.1077857.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  4. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature. 2010;468(7323):521–6. doi:10.1038/nature09591.

    Article  CAS  PubMed  Google Scholar 

  5. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol. 2011;13(3):215–22. doi:10.1038/ncb2164.

    Article  CAS  PubMed  Google Scholar 

  6. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011;108(19):7838–43. doi:10.1073/pnas.1103113108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Burns JC, Yoo JJ, Atala A, Jackson JD. MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro. PLoS One. 2012;7(10):e48704. doi:10.1371/journal.pone.0048704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science. 1988;240(4860):1774–6.

    Article  CAS  PubMed  Google Scholar 

  9. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science. 1988;240(4860):1772–4.

    Article  CAS  PubMed  Google Scholar 

  10. Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, et al. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development. 2014;141(4):816–29. doi:10.1242/dev.103036.

    Article  CAS  PubMed  Google Scholar 

  11. Groves AK. The challenge of hair cell regeneration. Exp Biol Med. 2010;235(4):434–46. doi:10.1258/ebm.2009.009281.

    Article  CAS  Google Scholar 

  12. Bermingham-McDonogh O, Reh TA. Regulated reprogramming in the regeneration of sensory receptor cells. Neuron. 2011;71(3):389–405. doi:10.1016/j.neuron.2011.07.015.

    Article  CAS  PubMed  Google Scholar 

  13. Nicolay BN, Bayarmagnai B, Moon NS, Benevolenskaya EV, Frolov MV. Combined inactivation of pRB and hippo pathways induces dedifferentiation in the Drosophila retina. PLoS Genet. 2010;6(4):e1000918. doi:10.1371/journal.pgen.1000918.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Warchol ME. Characterization of supporting cell phenotype in the avian inner ear: implications for sensory regeneration. Hear Res. 2007;227(1–2):11–8. doi:10.1016/j.heares.2006.08.014.

    Article  CAS  PubMed  Google Scholar 

  15. Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development. 1999;126(8):1581–90.

    CAS  PubMed  Google Scholar 

  16. Lowenheim H, Furness DN, Kil J, Zinn C, Gultig K, Fero ML, et al. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci U S A. 1999;96(7):4084–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ono K, Nakagawa T, Kojima K, Matsumoto M, Kawauchi T, Hoshino M, et al. Silencing p27 reverses post-mitotic state of supporting cells in neonatal mouse cochleae. Mol Cell Neurosci. 2009;42(4):391–8. doi:10.1016/j.mcn.2009.08.011.

    Article  CAS  PubMed  Google Scholar 

  18. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Canc. 2008;8(12):976–90. doi:10.1038/nrc2231.

    Article  CAS  Google Scholar 

  19. Yamanaka S. A fresh look at iPS cells. Cell. 2009;137(1):13–7. doi:10.1016/j.cell.2009.03.034.

    Article  CAS  PubMed  Google Scholar 

  20. Waldhaus J, Cimerman J, Gohlke H, Ehrich M, Muller M, Lowenheim H. Stemness of the organ of Corti relates to the epigenetic status of Sox2 enhancers. PLoS One. 2012;7(5):e36066. doi:10.1371/journal.pone.0036066.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lou XX, Nakagawa T, Nishimura K, Ohnishi H, Yamamoto N, Sakamoto T, et al. Reprogramming of mouse cochlear cells by transcription factors to generate induced pluripotent stem cells. Cell Reprogram. 2013;15(6):514–9. doi:10.1089/cell.2013.0020.

    Article  CAS  PubMed  Google Scholar 

  22. Cobaleda C, Jochum W, Busslinger M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 2007;449(7161):473–7. doi:10.1038/nature06159.

    Article  CAS  PubMed  Google Scholar 

  23. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 2013;503(7475):218–23. doi:10.1038/nature12777.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, et al. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol. 2013;15(10):1164–75. doi:10.1038/ncb2843.

    Article  CAS  PubMed  Google Scholar 

  25. Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502(7471):340–5. doi:10.1038/nature12586.

    Article  CAS  PubMed  Google Scholar 

  26. Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286(5439):481–6.

    Article  CAS  PubMed  Google Scholar 

  27. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi:10.1101/gad.947102.

    Article  CAS  PubMed  Google Scholar 

  28. Mutai H, Nagashima R, Sugitani Y, Noda T, Fujii M, Matsunaga T. Expression of Pou3f3/Brn-1 and its genomic methylation in developing auditory epithelium. Dev Neurobiol. 2009;69(14):913–30. doi:10.1002/dneu.20746.

    Article  CAS  PubMed  Google Scholar 

  29. Slattery EL, Speck JD, Warchol ME. Epigenetic influences on sensory regeneration: histone deacetylases regulate supporting cell proliferation in the avian utricle. J Assoc Res Otolaryngol. 2009;10(3):341–53. doi:10.1007/s10162-009-0166-y.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Layman WS, Sauceda MA, Zuo J. Epigenetic alterations by NuRD and PRC2 in the neonatal mouse cochlea. Hear Res. 2013;304:167–78. doi:10.1016/j.heares.2013.07.017.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor SM, Jones PA. Multiple new phenotypes induced in 10 T1/2 and 3 T3 cells treated with 5-azacytidine. Cell. 1979;17(4):771–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Nakagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nishimura, K., Nakagawa, T. (2014). Dedifferentiation-Mediated Regeneration. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_22

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics