Skip to main content

Self-Repair

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 992 Accesses

Abstract

Hair cells are known to be hard to regenerate in mammals once they are damaged. However, it is possible to repair even after damage, by blocking the degenerative pathway like an apoptosis. When hair cells are damaged, inflammatory responses are observed at first. At this stage, anti-inflammatory drugs such as glucocorticoid or cytokines are effective against hair cell damage. Also hair cells have proceeded to damage, mainly through a process known as apoptosis. During this process, anti-apoptotic drugs are effective for hair cell repair. Anti-reactive oxygen species (ROS), c-Jun-N-Terminal kinases (JNK) inhibitor, or caspase inhibitors are considered to be protective effect against hair cell damage. Neurotrophic factors and growth factors might be also effective for hair cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forge A, Li L, Corwin JT, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science. 1993;259:1616–9.

    Article  CAS  PubMed  Google Scholar 

  2. Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science. 1993;259:1619–22.

    Article  CAS  PubMed  Google Scholar 

  3. Taura A, Kojima K, Ito J, Ohmori H. Recovery of hair cell function after damage induced by gentamicin in organ culture of rat vestibular maculae. Brain Res. 2006;1098:33–48.

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh A, Jackson R. Best evidence topic report. Steroids in sudden sensorineural hearing loss. Emerg Med J. 2005;22:732–3.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115–24.

    Article  CAS  PubMed  Google Scholar 

  6. Okano T, Nakagawa T, Kita T, Kada S, Yoshimoto M, Nakahata T, et al. Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J Neurosci Res. 2008;86:1758–67. doi:10.1002/jnr.21625.

    Article  CAS  PubMed  Google Scholar 

  7. Sato E, Shick HE, Ransohoff RM, Hirose K. Expression of fractalkine receptor CXCR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. J Assoc Res Otolaryngol. 2010;11. doi:10.1007/s10162-009-0198-3.

  8. Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, et al. Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res. 2004;76:265–76.

    Article  CAS  PubMed  Google Scholar 

  9. Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83:575–83.

    Article  CAS  PubMed  Google Scholar 

  10. So H, Kim H, Lee JH, Park C, Kim Y, Kim E, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol. 2007;8:338–55.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hwang JH, Chen JC, Yang SY, Wang MF, Chan YC. Expression of tumor necrosis factor-α and interleukin-1β genes in the cochlea and inferior colliculus in salicylate-induced tinnitus. J Neuroinflamm. 2011;9:8–30. doi:10.1186/1742-2094-8-30.

    Google Scholar 

  12. Kim HJ, Oh GS, Lee JH, Lyu AR, Ji HM, Lee SH, et al. Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res. 2011;21:944–56. doi:10.1038/cr.2011.27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Forge A, Li L. Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res. 2000;139:97–115.

    Article  CAS  PubMed  Google Scholar 

  14. Mangiardi DA, Williamson KM, May KE, Messana EP, Mountain DC, Cotanche DA. Progression of hair cell ejection and molecular markers of apoptosis in the avian cochlea following gentamicin treatment. J Comp Neurol. 2004;475:1–18.

    Article  CAS  PubMed  Google Scholar 

  15. Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004;207:3221–31.

    Article  CAS  PubMed  Google Scholar 

  16. Hirose K, Hockenbery DM, Rubel EW. Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hear Res. 1997;104:1–14.

    Article  CAS  PubMed  Google Scholar 

  17. Sha SH, Schacht J. Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res. 1999;128:112–8.

    Article  CAS  PubMed  Google Scholar 

  18. Choung YH, Taura A, Pak K, Choi SJ, Masuda M, Ryan AF. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience. 2009;161:214–26. doi:10.1016/j.neuroscience.2009.02.085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Matsui JI, Gale JE, Warchol ME. Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol. 2004;61:250–66.

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa T, Yamane H. Cytochrome c redistribution in apoptosis of guinea pig vestibular hair cells. Brain Res. 1999;847:357–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rarey KE, Curtis LM. Receptors for glucocorticoids in the human inner ear. Otolaryngol Head Neck Surg. 1996;115:38–41.

    Article  CAS  PubMed  Google Scholar 

  22. Fu E, Saporata S. Methylprednisolone inhibits production of interleukin-1beta and interleukin-6 in the spinal cord following compression injury in rats. J Neurosurg Anesthesiol. 2005;17:82–5.

    Article  PubMed  Google Scholar 

  23. Chi FL, Yang MQ, Zhou YD, Wang B. Therapeutic efficacy of topical application of dexamethasone to the round window niche after acoustic trauma caused by intensive impulse noise in guinea pigs. J Laryngol Otol. 2011;125:673–85. doi:10.1017/S0022215111000028.

    Article  PubMed  Google Scholar 

  24. Arslan HH, Satar B, Serdar MA, Ozler M, Yilmaz E. Effects of hyperbaric oxygen and dexamethasone on proinflammatory cytokines of rat cochlea in noise-induced hearing loss. Otol Neurotol. 2012;33:1672–8. doi:10.1097/MAO.0b013e31826bf3f6.

    Article  PubMed  Google Scholar 

  25. Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D, et al. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res. 2010;66:345–52. doi:10.1016/j.neures.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  26. Infante EB, Channer GA, Telischi FF, Gupta C, Dinh JT, Vu L, et al. Mannitol significantly reduces the ototoxic effects of TNFα against auditory HC's potentially by inhibiting c-Jun N terminal kinase (JNK) activation pathway. Otol Neurotol. 2012;33:1656–63. doi:10.1097/MAO.0b013e31826bedd9.

    Article  PubMed  Google Scholar 

  27. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437.

    Article  CAS  PubMed  Google Scholar 

  28. Legler DF, Bruckner M, Uetz-von Allmen E, Krause P. Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. Int J Biochem Cell Biol. 2010;42:198–201. doi:10.1016/j.biocel.2009.09.015.

    Article  CAS  PubMed  Google Scholar 

  29. Hori R, Nakagawa T, Sugimoto Y, Sakamoto T, Yamamoto N, Hamaguchi K, et al. Prostaglandin E receptor subtype EP4 agonist protects auditory hair cells against noise-induced trauma. Neuroscience. 2009;160:813–9. doi:10.1016/j.neuroscience.2009.03.014.

    Article  CAS  PubMed  Google Scholar 

  30. Hori R, Nakagawa T, Yamamoto N, Hamaguchi K, Ito J. Role of prostaglandin E receptor subtypes EP2 and EP4 in autocrine and paracrine functions of vascular endothelial growth factor in the inner ear. BMC Neurosci. 2010;11:11–35. doi:10.1186/1471-2202-11-35.

    Article  Google Scholar 

  31. Nakagawa T. Roles of prostaglandin E2 in the cochlea. Hear Res. 2011;276:27–33. doi:10.1016/j.heares.2011.01.015.

    Article  CAS  PubMed  Google Scholar 

  32. Greenlund LJ, Deckwerth TL, Johnson Jr EM. Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron. 1995;14:303–15.

    Article  CAS  PubMed  Google Scholar 

  33. Song BB, Schacht J. Variable efficacy of radical scavengers and iron chelators to attenuate gentamicin ototoxicity in guinea pig in vivo. Hear Res. 1996;94:87–93.

    Article  CAS  PubMed  Google Scholar 

  34. Garetz SL, Altschuler RA, Schacht J. Attenuation of gentamicin ototoxicity by glutathione in the guinea pig in vivo. Hear Res. 1994;77:81–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kikkawa YS, Nakagawa T, Horie RT, Ito J. Hydrogen protects auditory hair cells from free radicals. Neuroreport. 2009;20:689–94. doi:10.1097/WNR.0b013e32832a5c68.

    Article  PubMed  Google Scholar 

  36. Taura A, Kikkawa YS, Nakagawa T, Ito J. Hydrogen protects vestibular hair cells from free radicals. Acta Otolaryngol Suppl. 2010;563:95–103. doi:10.3109/00016489.2010.486799.

    Article  CAS  PubMed  Google Scholar 

  37. Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR, et al. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science. 1997;277:693–6.

    Article  CAS  PubMed  Google Scholar 

  38. Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the JNK3 gene. Nature. 1997;389:865–70.

    Article  CAS  PubMed  Google Scholar 

  39. Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM, et al. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/mediators of hair cell death 265 KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci. 2000;20:43–50.

    CAS  PubMed  Google Scholar 

  40. Murai N, Kirkegaard M, Järlebark L, Risling M, Suneson A, Ulfendahl M. Activation of JNK in the inner ear following impulse noise exposure. J Neurotrauma. 2008;25:72–7. doi:10.1089/neu.2007.0346.

    Article  PubMed  Google Scholar 

  41. Wang J, Van De Water TR, Bonny C, de Ribaupierre F, Puel JL, Zine A. A peptide inhibitor of c-Jun-Nterminal Kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003;23:8596–607.

    CAS  PubMed  Google Scholar 

  42. Coleman JK, Littlesunday C, Jackson R, Meyer T. AM-111 protects against permanent hearing loss from impulse noise trauma. Hear Res. 2007;226:70–8.

    Article  CAS  PubMed  Google Scholar 

  43. Barkdull GC, Hondarrague Y, Meyer T, Harris JP, Keithley EM. AM-111 reduces hearing loss in a guinea pig model of acute labyrinthitis. Laryngoscope. 2007;117:2174–82. doi:10.1097/MLG.0b013e3181461f92.

    Article  CAS  PubMed  Google Scholar 

  44. Grindal TC, Sampson EM, Antonelli PJ. AM-111 prevents hearing loss from semicircular canal injury in otitis media. Laryngoscope. 2010;120:178–82. doi:10.1002/lary.20759.

    Article  CAS  PubMed  Google Scholar 

  45. Omotehara Y, Hakuba N, Hato N, Okada M, Gyo K. Protection against ischemic cochlear damage by intratympanic administration of AM-111. Otol Neurotol. 2011;32:1422–7. doi:10.1097/MAO.0b013e3182355658.

    Article  PubMed  Google Scholar 

  46. Suckfuell M, Canis M, Strieth S, Scherer H, Haisch A. Intratympanic treatment of acute acoustic trauma with a cell-permeable JNK ligand: a prospective randomized phase I/II study. Acta Otolaryngol. 2007;127:938–42.

    Article  CAS  PubMed  Google Scholar 

  47. Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15. doi:10.1002/jcp.10119.

    Article  CAS  PubMed  Google Scholar 

  48. Cunningham LL, Brandon CS. Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J Assoc Res Otolaryngol. 2006;7:299–307.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Francis SP, Kramarenko II, Brandon CS, Lee FS, Baker TG, Cunningham LL. Celastrol inhibits aminoglycoside-induced ototoxicity via heat shock protein 32. Cell Death Dis. 2011;2:e195. doi:10.1038/cddis.2011.76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Cunningham LL, Cheng AG, Rubel EW. Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci. 2002;22:8532–40.

    CAS  PubMed  Google Scholar 

  51. Matsui J, Ogilvie J, Warchol M. Inhibition of caspases prevents ototoxic and ongoing hair cell death. J Neurosci. 2002;22:1218–27.

    CAS  PubMed  Google Scholar 

  52. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.

    Article  CAS  PubMed  Google Scholar 

  53. Cotanche DA. Genetic and pharmacological intervention for treatment/prevention of hearing loss. J Commun Disord. 2008;41:421–43. doi:10.1016/j.jcomdis.2008.03.004.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lidian A, Stenkvist-Asplund M, Linder B, Anniko M, Nordang L. Early hearing protection by brain-derived neurotrophic factor. Acta Otolaryngol. 2013;133:12–21. doi:10.3109/00016489.2012.712217.

    Article  CAS  PubMed  Google Scholar 

  55. Ruan RS, Leong SK, Mark I, Yeoh KH. Effects of BDNF and NT-3 on hair cell survival in guinea pig cochlea damaged by kanamycin treatment. Neuroreport. 1999;10:2067–71.

    Article  CAS  PubMed  Google Scholar 

  56. Okano T, Xuan S, Kelley MW. Insulin-like growth factor signaling regulates the timing of sensory cell differentiation in the mouse cochlea. J Neurosci. 2011;31:18104–18. doi:10.1523/JNEUROSCI.3619-11.2011.

    Article  CAS  PubMed  Google Scholar 

  57. Lee KY, Nakagawa T, Okano T, Hori R, Ono K, Tabata Y, et al. Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel. Otol Neurotol. 2007;28:976–81.

    Article  PubMed  Google Scholar 

  58. Angunsri N, Taura A, Nakagawa T, Hayashi Y, Kitajiri S, Omi E, et al. Insulin-like growth factor 1 protects vestibular hair cells from aminoglycosides. Neuroreport. 2011;22:38–43. doi:10.1097/WNR.0b013e32834273e9.

    Article  CAS  PubMed  Google Scholar 

  59. Hayashi Y, Yamamoto N, Nakagawa T, Ito J. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci. 2013;56:29–38. doi:10.1016/j.mcn.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  60. Yamashita H, Oesterle EC. Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proc Natl Acad Sci U S A. 1995;92:3152–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Taura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Taura, A., Nakagawa, T. (2014). Self-Repair. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_20

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics