Skip to main content

Development and Regeneration

  • Chapter
  • First Online:
Book cover Regenerative Medicine for the Inner Ear
  • 991 Accesses

Abstract

Currently, regeneration of target organs is achieved by several strategies, including transplantation of stem cells and reprogramming of mature cells to the desired cell types (transdifferentiation). Transplantation of naïve stem cells can cause several problems such as teratoma formation, immunogenicity, and elimination of transplanted cells. These disadvantages can be avoided by induction of stem cells into the desired cell types. On the other hand, transdifferentiation of mature cells into the desired mature or differentiating cell types is another viable option for circumventing the numerous negative adverse effects of naïve stem cell transplantation. The selection of most of the factors required for the induction of stem cells or transdifferentiation is based on the progressively accumulating knowledge of developmental biology. These aspects include the determinants of dorsoventral or anteroposterior axis and germinal layers or the transcription factors specific for desired organs. By manipulating pluripotent stem cells using predetermined factors, these stem cells can be induced into all three germ layers (endoderm, mesoderm, and ectoderm) and into differentiated organs. To date, several organs have been successfully transdifferentiated from other types of mature cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–5. doi:10.1038/nature10135.

    Article  CAS  PubMed  Google Scholar 

  2. Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494(7435):100–4. doi:10.1038/nature11807.

    Article  CAS  PubMed  Google Scholar 

  3. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A. 1995;92(25):11879–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Svendsen CN, Clarke DJ, Rosser AE, Dunnett SB. Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system. Exp Neurol. 1996;137(2):376–88. doi:10.1006/exnr.1996.0039.

    Article  CAS  PubMed  Google Scholar 

  5. Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci. 2013;70(20):3739–52. doi:10.1007/s00018-013-1269-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318(5858):1920–3. doi:10.1126/science.1152092.

    Article  CAS  PubMed  Google Scholar 

  7. Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  8. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985;87:27–45.

    CAS  PubMed  Google Scholar 

  9. Hirata H, Kawamata S, Murakami Y, Inoue K, Nagahashi A, Tosaka M, et al. Coexpression of platelet-derived growth factor receptor alpha and fetal liver kinase 1 enhances cardiogenic potential in embryonic stem cell differentiation in vitro. J Biosci Bioeng. 2007;103(5):412–9. doi:10.1263/jbb.103.412.

    Article  CAS  PubMed  Google Scholar 

  10. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8(2):228–40. doi:10.1016/j.stem.2010.12.008.

    Article  CAS  PubMed  Google Scholar 

  11. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One. 2011;6(8):e23657. doi:10.1371/journal.pone.0023657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Albano RM, Godsave SF, Huylebroeck D, Van Nimmen K, Isaacs HV, Slack JM, et al. A mesoderm-inducing factor produced by WEHI-3 murine myelomonocytic leukemia cells is activin A. Development. 1990;110(2):435–43.

    CAS  PubMed  Google Scholar 

  13. van den Eijnden-Van Raaij AJ, van Zoelent EJ, van Nimmen K, Koster CH, Snoek GT, Durston AJ, et al. Activin-like factor from a Xenopus laevis cell line responsible for mesoderm induction. Nature. 1990;345(6277):732–4. doi:10.1038/345732a0.

    Article  PubMed  Google Scholar 

  14. Smith JC, Price BM, Van Nimmen K, Huylebroeck D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature. 1990;345(6277):729–31. doi:10.1038/345729a0.

    Article  CAS  PubMed  Google Scholar 

  15. Koster M, Plessow S, Clement JH, Lorenz A, Tiedemann H, Knochel W. Bone morphogenetic protein 4 (BMP-4), a member of the TGF-beta family, in early embryos of Xenopus laevis: analysis of mesoderm inducing activity. Mech Dev. 1991;33(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kimelman D, Kirschner M. Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell. 1987;51(5):869–77.

    Article  CAS  PubMed  Google Scholar 

  17. Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001;15(3):316–27. doi:10.1101/gad.855501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kardami E. Stimulation and inhibition of cardiac myocyte proliferation in vitro. Mol Cell Biochem. 1990;92(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  19. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489(7415):322–5. doi:10.1038/nature11317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ. Nodal signalling in the epiblast patterns the early mouse embryo. Nature. 2001;411(6840):965–9. doi:10.1038/35082103.

    Article  CAS  PubMed  Google Scholar 

  21. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41. doi:10.1038/nbt1163.

    Article  PubMed  Google Scholar 

  22. Apelqvist A, Ahlgren U, Edlund H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol. 1997;7(10):801–4.

    Article  CAS  PubMed  Google Scholar 

  23. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 1998;12(11):1705–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Stafford D, Prince VE. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol. 2002;12(14):1215–20.

    Article  CAS  PubMed  Google Scholar 

  25. Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development. 2001;128(24):5109–17.

    CAS  PubMed  Google Scholar 

  26. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401. doi:10.1038/nbt1259.

    Article  PubMed  Google Scholar 

  27. Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A. 2010;107(28):12704–9. doi:10.1073/pnas.0910106107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A. 2008;105(15):5856–61. doi:10.1073/pnas.0801677105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gensburger C, Labourdette G, Sensenbrenner M. Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett. 1987;217(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  30. Deloulme JC, Baudier J, Sensenbrenner M. Establishment of pure neuronal cultures from fetal rat spinal cord and proliferation of the neuronal precursor cells in the presence of fibroblast growth factor. J Neurosci Res. 1991;29(4):499–509. doi:10.1002/jnr.490290410.

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A. 2005;102(32):11331–6. doi:10.1073/pnas.0500010102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009;458(3):126–31. doi:10.1016/j.neulet.2009.04.035.

    Article  CAS  PubMed  Google Scholar 

  33. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008;26(2):215–24. doi:10.1038/nbt1384.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  35. Buganim Y, Itskovich E, Hu YC, Cheng AW, Ganz K, Sarkar S, et al. Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors. Cell Stem Cell. 2012;11(3):373–86. doi:10.1016/j.stem.2012.07.019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011;475(7356):386–9. doi:10.1038/nature10116.

    Article  CAS  PubMed  Google Scholar 

  37. Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011;475(7356):390–3. doi:10.1038/nature10263.

    Article  CAS  PubMed  Google Scholar 

  38. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–41. doi:10.1038/nature08797.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32. doi:10.1038/nature07314.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yamamoto, N. (2014). Development and Regeneration. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics