Skip to main content

Latest Liquid Crystal Technology

  • Chapter
  • First Online:
The Liquid Crystal Display Story

Abstract

Among the characteristic physical properties of liquid crystals, what are of critical importance to display devices (LCDs) are those of macroscopic spatiotemporal scale; there, the theories of liquid crystals as continuous media play essential roles. The basis of static continuum mechanics of nematic liquid crystals was established by Oseen [1] and Frank [2] far before the development of LCD technology. The dynamic continuum theory of nematics, which is frequently called the nematodynamics, was developed by Ericksen [3] and Leslie [4] (hereafter referred to as E–L theory) based on the classical mechanics just in time for the upsurge of LCD technology. In conjunction with the electrodynamics of continuous media, the static and dynamic continuum mechanics of Oseen–Frank and E–L theory provided theoretical tools to analyze quantitatively key phenomena, e.g., Freedericksz transition of various configurations and associated optical switching characteristics. For the details of E–L theory [5, 6, 7] and its development [9, 10], please refer to the articles cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.W. Oseen, Trans. Faraday Soc. 29, 883 (1933)

    Article  Google Scholar 

  2. F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)

    Article  Google Scholar 

  3. J.L. Ericksen, Arch. Rat. Mech. Anal. 4, 231 (1960); 9, 371 (1962)

    Google Scholar 

  4. F.M. Leslie, Quart. J. Mech. Appl. Math. 19, 357 (1966); Arch. Rat. Mech. Anal. 28, 265 (1968)

    Google Scholar 

  5. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon, Oxford, 1993)

    Google Scholar 

  6. S. Chandrasekkar, Liquid Crystals, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  7. I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals, A Mathematical Introduction (Taylor & Francis, London/New York, 2004)

    Google Scholar 

  8. A.M. Sonnet, E.G. Virga, The Dissipative Ordered Fluids, Theories for Liquid Crystals (Springer, New York, 2012)

    Google Scholar 

  9. T. Carlsson, F.M. Leslie, Liq. Cryst. 26, 1267 (1999)

    Article  Google Scholar 

  10. D. Dummur, T. Sluckin, Soap, Science, and Flat-Screen TVs (Oxford University Press, New York, 2011)

    Google Scholar 

  11. P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401 (1972)

    Article  Google Scholar 

  12. H. Pleiner, H.R. Brand, Hydrodynamics and Electrohydrodynamics of Liquid Crystals, in Pattern Formation in Liquid Crystals, Chapter 2, ed. by A. Buka, L. Kramer (Springer, Berlin, 1996)

    Google Scholar 

  13. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  14. T.C. Lubensky, Symmetry and the Physical Properties of Liquid Crystals, Part 2, Chapter 1, in Progress in Liquid Crystal Science and Technology, In Honor of Shunsuke Kobayashi’s 80th Birthday, ed. by H.-S. Kwok, S. Naemura, H.L. Ong (World Scientific, Singapore, 2013)

    Google Scholar 

  15. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Pergamon Press, New York, 1986)

    Google Scholar 

  16. D. Forster, T.C. Lubensky, P.C. Martin, J. Swift, P.S. Pershan, Phys. Rev. Lett. 26, 1016 (1971)

    Article  Google Scholar 

  17. O. Parodi, J. Phys. (Paris) 31, 581 (1970)

    Article  Google Scholar 

  18. D. Forster, Ann. Phys. (NY) 85, 505 (1974)

    Article  Google Scholar 

  19. H. Yoshida et al., Abstract of ILCC, I10 (2002)

    Google Scholar 

  20. Y. Yamada et al., SID 11 Digest, 160 (2011)

    Google Scholar 

  21. M. Schadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992)

    Article  Google Scholar 

  22. Y. Iimura et al., J. Photopolym. Sci. Technol. 257 (1995)

    Google Scholar 

  23. H. Yoshida et al., Jpn. J. Appl. Phys. 36, L428–L431 (1997)

    Article  Google Scholar 

  24. Y. Tasaka et al., Digest of AM-LCD’98, 35 (1998)

    Google Scholar 

  25. K. Miyachi et al., SID 10 Digest, 579 (2010)

    Google Scholar 

  26. K. Hanaoka et al., SID 04 Digest, 1200 (2004)

    Google Scholar 

  27. H. Yoshida et al., SID 00 Digest, 334 (2000)

    Google Scholar 

  28. Y. Nakanishi et al., Digest of AM-LCD 2000, 13 (2000)

    Google Scholar 

  29. T. Sakurai et al., SID 10 Digest, 724 (2010)

    Google Scholar 

  30. M. Schadt, Jpn. J. Appl. Phys. 48, 1 (2009); Naturwissenschaftliche Rundschau 741, 117 (2010); J. Eur. Acad. Sci. 1, 1 (2011)

    Google Scholar 

  31. M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov, Jpn. J. Appl. Phys. 31, 2155 (1992). US Patent US 5,389,698 (1991)

    Google Scholar 

  32. J. Cognard, Mol. Cryst. Liq. Cryst. Suppl. 1, 1–74 (1982)

    Google Scholar 

  33. M. Schadt, W. Helfrich, Mol. Cryst. Liq. Cryst. 17, 355 (1972)

    Article  Google Scholar 

  34. T.J. Scheffer, J. Nehring, Appl. Phys. Lett. 45, 1021 (1984)

    Article  Google Scholar 

  35. M. Schadt, F. Leenhouts, Appl. Phys. Lett. 50, 236 (1987)

    Article  Google Scholar 

  36. N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)

    Article  Google Scholar 

  37. J. Fünfschilling, M. Schadt, Digest SID 99, 308 (1999)

    Google Scholar 

  38. M. Schadt, P.R. Gerber, Mol. Cryst. Liq. Cryst. 65, 241 (1981)

    Article  Google Scholar 

  39. L.T. Creagh, A.R. Kmetz, Mol. Cryst. Liq. Cryst. 24, 59 (1973)

    Article  Google Scholar 

  40. J.L. Janning, Appl. Phys. Lett. 21, 173 (1972)

    Article  Google Scholar 

  41. D.W. Berreman, Phys. Rev. Lett. 28, 1683 (1972)

    Article  Google Scholar 

  42. A.M. Lackner, J.D. Margerum, L.J. Miller, W.H. Smith Jr., Mol. Cryst. Liq. Cryst. 199, 37 (1991)

    Article  Google Scholar 

  43. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, Langmuir 4, 646 (1988)

    Article  Google Scholar 

  44. W.M. Gibbons, P.J. Shannon, S.T. Sun, B.J. Swetlin, Nature 351, 49 (1991)

    Article  Google Scholar 

  45. M. Dumont, Z. Sekkat, SPIE 1774, 188 (1992)

    Article  Google Scholar 

  46. V.G. Chigrinov, H.-S. Kwok, H. Hasebe, H. Takatsu, H. Takada, J. SID. 16/9, 897 (2008)

    Google Scholar 

  47. M. Schadt, H. Seiberle, A. Schuster, Nature 381, 212 (1996). US Patent US-6,215,539 (1995)

    Google Scholar 

  48. H. Seiberle, M. Schadt, SID Proc. Asia Display’98, 193 (1998); J. SID. 8/1 Soc. Inf. Disp. 67 (2000)

    Google Scholar 

  49. M. Schadt, Ann. Rev. Mater. Sci. 27, 305 (1997)

    Article  Google Scholar 

  50. M. Schadt, Mol. Cryst. Liq. Cryst. 364, 151 (2001)

    Article  Google Scholar 

  51. E. Hoffmann, H. Klausmann, E. Ginter, P.M. Knoll, H. Seiberle, M. Schadt, Proc. SID98, 737 (1998)

    Google Scholar 

  52. R. Kiefer et al., SID Proc. IDRC92, 547(1992);. M. Oh-e et al., Proc. SID Japan Display’95, 577 (1995)

    Google Scholar 

  53. M.F. Fahrenschon, K. Schiekel, Appl. Phys. Lett. 19, 301 (1971)

    Google Scholar 

  54. F.J. Kahn, Appl. Phys. Lett. 20, 199 (1972)

    Article  Google Scholar 

  55. J. Chen, K.C. Chang, J. DelPico, H. Seiberle, M. Schadt, Proc. SID99, 98 (1999)

    Google Scholar 

  56. A. Takeda et al., Proc. SID98, 1077(1998)

    Google Scholar 

  57. E.P. Virga, M. Schadt, Jpn. J. Appl. Phys. 39, 6637 (2000)

    Article  Google Scholar 

  58. M. Schadt, H. Seiberle, A. Schuster, S. Kelly, Jpn. J. Appl. Phys. 34, 3240 (1995)

    Article  Google Scholar 

  59. M. Schadt, H. Seiberle, A. Schuster, S. Kelly, Jpn. J. Appl. Phys. 34, L764(1995). US 5,602,661 (1993)

    Google Scholar 

  60. C. Benecke, H. Seiberle, M. Schadt, Jpn. J. Appl. Phys. 39, 525 (2000)

    Article  Google Scholar 

  61. M. Ibn-Elhaj, M. Schadt, Nature 410, 796 (2001); Jpn. J. Appl. Phys. 42 (2003). EP-1230319 (1999)

    Google Scholar 

  62. T. Yukinari, Electronic Materials and Parts, 58 (1992)

    Google Scholar 

  63. Y. Sato, ’04 Newest Liquid Crystal Process Technology, 78 (2008)

    Google Scholar 

  64. T. Ishizu, 2nd New JSPMI Prize (2004)

    Google Scholar 

  65. T. Asano, Monthly DISPLAY, 46 (2006)

    Google Scholar 

  66. M. Matsuda, Japanese Liquid Crystal Society Forum (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Okano, K., Yamamoto, J., Yoshida, H., Okamoto, K., Schadt, M., Matsuda, M. (2014). Latest Liquid Crystal Technology. In: Koide, N. (eds) The Liquid Crystal Display Story. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54859-1_7

Download citation

Publish with us

Policies and ethics