Advertisement

Latest Liquid Crystal Technology

  • Koji Okano
  • Jun Yamamoto
  • Hidefumi Yoshida
  • Kenji Okamoto
  • Martin Schadt
  • Masanori Matsuda
Chapter

Abstract

Among the characteristic physical properties of liquid crystals, what are of critical importance to display devices (LCDs) are those of macroscopic spatiotemporal scale; there, the theories of liquid crystals as continuous media play essential roles. The basis of static continuum mechanics of nematic liquid crystals was established by Oseen [1] and Frank [2] far before the development of LCD technology. The dynamic continuum theory of nematics, which is frequently called the nematodynamics, was developed by Ericksen [3] and Leslie [4] (hereafter referred to as E–L theory) based on the classical mechanics just in time for the upsurge of LCD technology. In conjunction with the electrodynamics of continuous media, the static and dynamic continuum mechanics of Oseen–Frank and E–L theory provided theoretical tools to analyze quantitatively key phenomena, e.g., Freedericksz transition of various configurations and associated optical switching characteristics. For the details of E–L theory [5, 6, 7] and its development [9, 10], please refer to the articles cited.

Keywords

Liquid Crystal Thermal Cure Liquid Crystal Cell Liquid Crystal Polymer Hydrodynamic Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.W. Oseen, Trans. Faraday Soc. 29, 883 (1933)CrossRefGoogle Scholar
  2. 2.
    F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)CrossRefGoogle Scholar
  3. 3.
    J.L. Ericksen, Arch. Rat. Mech. Anal. 4, 231 (1960); 9, 371 (1962)Google Scholar
  4. 4.
    F.M. Leslie, Quart. J. Mech. Appl. Math. 19, 357 (1966); Arch. Rat. Mech. Anal. 28, 265 (1968)Google Scholar
  5. 5.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon, Oxford, 1993)Google Scholar
  6. 6.
    S. Chandrasekkar, Liquid Crystals, 2nd edn. (Cambridge University Press, Cambridge, 1992)CrossRefGoogle Scholar
  7. 7.
    I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals, A Mathematical Introduction (Taylor & Francis, London/New York, 2004)Google Scholar
  8. 8.
    A.M. Sonnet, E.G. Virga, The Dissipative Ordered Fluids, Theories for Liquid Crystals (Springer, New York, 2012)Google Scholar
  9. 9.
    T. Carlsson, F.M. Leslie, Liq. Cryst. 26, 1267 (1999)CrossRefGoogle Scholar
  10. 10.
    D. Dummur, T. Sluckin, Soap, Science, and Flat-Screen TVs (Oxford University Press, New York, 2011)Google Scholar
  11. 11.
    P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401 (1972)CrossRefGoogle Scholar
  12. 12.
    H. Pleiner, H.R. Brand, Hydrodynamics and Electrohydrodynamics of Liquid Crystals, in Pattern Formation in Liquid Crystals, Chapter 2, ed. by A. Buka, L. Kramer (Springer, Berlin, 1996)Google Scholar
  13. 13.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  14. 14.
    T.C. Lubensky, Symmetry and the Physical Properties of Liquid Crystals, Part 2, Chapter 1, in Progress in Liquid Crystal Science and Technology, In Honor of Shunsuke Kobayashi’s 80th Birthday, ed. by H.-S. Kwok, S. Naemura, H.L. Ong (World Scientific, Singapore, 2013)Google Scholar
  15. 15.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Pergamon Press, New York, 1986)Google Scholar
  16. 16.
    D. Forster, T.C. Lubensky, P.C. Martin, J. Swift, P.S. Pershan, Phys. Rev. Lett. 26, 1016 (1971)CrossRefGoogle Scholar
  17. 17.
    O. Parodi, J. Phys. (Paris) 31, 581 (1970)CrossRefGoogle Scholar
  18. 18.
    D. Forster, Ann. Phys. (NY) 85, 505 (1974)CrossRefGoogle Scholar
  19. 19.
    H. Yoshida et al., Abstract of ILCC, I10 (2002)Google Scholar
  20. 20.
    Y. Yamada et al., SID 11 Digest, 160 (2011)Google Scholar
  21. 21.
    M. Schadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992)CrossRefGoogle Scholar
  22. 22.
    Y. Iimura et al., J. Photopolym. Sci. Technol. 257 (1995)Google Scholar
  23. 23.
    H. Yoshida et al., Jpn. J. Appl. Phys. 36, L428–L431 (1997)CrossRefGoogle Scholar
  24. 24.
    Y. Tasaka et al., Digest of AM-LCD’98, 35 (1998)Google Scholar
  25. 25.
    K. Miyachi et al., SID 10 Digest, 579 (2010)Google Scholar
  26. 26.
    K. Hanaoka et al., SID 04 Digest, 1200 (2004)Google Scholar
  27. 27.
    H. Yoshida et al., SID 00 Digest, 334 (2000)Google Scholar
  28. 28.
    Y. Nakanishi et al., Digest of AM-LCD 2000, 13 (2000)Google Scholar
  29. 29.
    T. Sakurai et al., SID 10 Digest, 724 (2010)Google Scholar
  30. 30.
    M. Schadt, Jpn. J. Appl. Phys. 48, 1 (2009); Naturwissenschaftliche Rundschau 741, 117 (2010); J. Eur. Acad. Sci. 1, 1 (2011)Google Scholar
  31. 31.
    M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov, Jpn. J. Appl. Phys. 31, 2155 (1992). US Patent US 5,389,698 (1991)Google Scholar
  32. 32.
    J. Cognard, Mol. Cryst. Liq. Cryst. Suppl. 1, 1–74 (1982)Google Scholar
  33. 33.
    M. Schadt, W. Helfrich, Mol. Cryst. Liq. Cryst. 17, 355 (1972)CrossRefGoogle Scholar
  34. 34.
    T.J. Scheffer, J. Nehring, Appl. Phys. Lett. 45, 1021 (1984)CrossRefGoogle Scholar
  35. 35.
    M. Schadt, F. Leenhouts, Appl. Phys. Lett. 50, 236 (1987)CrossRefGoogle Scholar
  36. 36.
    N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)CrossRefGoogle Scholar
  37. 37.
    J. Fünfschilling, M. Schadt, Digest SID 99, 308 (1999)Google Scholar
  38. 38.
    M. Schadt, P.R. Gerber, Mol. Cryst. Liq. Cryst. 65, 241 (1981)CrossRefGoogle Scholar
  39. 39.
    L.T. Creagh, A.R. Kmetz, Mol. Cryst. Liq. Cryst. 24, 59 (1973)CrossRefGoogle Scholar
  40. 40.
    J.L. Janning, Appl. Phys. Lett. 21, 173 (1972)CrossRefGoogle Scholar
  41. 41.
    D.W. Berreman, Phys. Rev. Lett. 28, 1683 (1972)CrossRefGoogle Scholar
  42. 42.
    A.M. Lackner, J.D. Margerum, L.J. Miller, W.H. Smith Jr., Mol. Cryst. Liq. Cryst. 199, 37 (1991)CrossRefGoogle Scholar
  43. 43.
    K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, Langmuir 4, 646 (1988)CrossRefGoogle Scholar
  44. 44.
    W.M. Gibbons, P.J. Shannon, S.T. Sun, B.J. Swetlin, Nature 351, 49 (1991)CrossRefGoogle Scholar
  45. 45.
    M. Dumont, Z. Sekkat, SPIE 1774, 188 (1992)CrossRefGoogle Scholar
  46. 46.
    V.G. Chigrinov, H.-S. Kwok, H. Hasebe, H. Takatsu, H. Takada, J. SID. 16/9, 897 (2008)Google Scholar
  47. 47.
    M. Schadt, H. Seiberle, A. Schuster, Nature 381, 212 (1996). US Patent US-6,215,539 (1995)Google Scholar
  48. 48.
    H. Seiberle, M. Schadt, SID Proc. Asia Display’98, 193 (1998); J. SID. 8/1 Soc. Inf. Disp. 67 (2000)Google Scholar
  49. 49.
    M. Schadt, Ann. Rev. Mater. Sci. 27, 305 (1997)CrossRefGoogle Scholar
  50. 50.
    M. Schadt, Mol. Cryst. Liq. Cryst. 364, 151 (2001)CrossRefGoogle Scholar
  51. 51.
    E. Hoffmann, H. Klausmann, E. Ginter, P.M. Knoll, H. Seiberle, M. Schadt, Proc. SID98, 737 (1998)Google Scholar
  52. 52.
    R. Kiefer et al., SID Proc. IDRC92, 547(1992);. M. Oh-e et al., Proc. SID Japan Display’95, 577 (1995)Google Scholar
  53. 53.
    M.F. Fahrenschon, K. Schiekel, Appl. Phys. Lett. 19, 301 (1971)Google Scholar
  54. 54.
    F.J. Kahn, Appl. Phys. Lett. 20, 199 (1972)CrossRefGoogle Scholar
  55. 55.
    J. Chen, K.C. Chang, J. DelPico, H. Seiberle, M. Schadt, Proc. SID99, 98 (1999)Google Scholar
  56. 56.
    A. Takeda et al., Proc. SID98, 1077(1998)Google Scholar
  57. 57.
    E.P. Virga, M. Schadt, Jpn. J. Appl. Phys. 39, 6637 (2000)CrossRefGoogle Scholar
  58. 58.
    M. Schadt, H. Seiberle, A. Schuster, S. Kelly, Jpn. J. Appl. Phys. 34, 3240 (1995)CrossRefGoogle Scholar
  59. 59.
    M. Schadt, H. Seiberle, A. Schuster, S. Kelly, Jpn. J. Appl. Phys. 34, L764(1995). US 5,602,661 (1993)Google Scholar
  60. 60.
    C. Benecke, H. Seiberle, M. Schadt, Jpn. J. Appl. Phys. 39, 525 (2000)CrossRefGoogle Scholar
  61. 61.
    M. Ibn-Elhaj, M. Schadt, Nature 410, 796 (2001); Jpn. J. Appl. Phys. 42 (2003). EP-1230319 (1999)Google Scholar
  62. 62.
    T. Yukinari, Electronic Materials and Parts, 58 (1992)Google Scholar
  63. 63.
    Y. Sato, ’04 Newest Liquid Crystal Process Technology, 78 (2008)Google Scholar
  64. 64.
    T. Ishizu, 2nd New JSPMI Prize (2004)Google Scholar
  65. 65.
    T. Asano, Monthly DISPLAY, 46 (2006)Google Scholar
  66. 66.
    M. Matsuda, Japanese Liquid Crystal Society Forum (2008)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Koji Okano
    • 1
  • Jun Yamamoto
    • 2
  • Hidefumi Yoshida
    • 3
  • Kenji Okamoto
    • 3
  • Martin Schadt
    • 4
  • Masanori Matsuda
    • 5
  1. 1.Tokyo UniversityTokyoJapan
  2. 2.Kyoto UniversityKyotoJapan
  3. 3.Sharp CorporationNaraJapan
  4. 4.MS High-Tech ConsultingSeltisbergSwitzerland
  5. 5.Fine Chemicals Technology Section, Fine Chemicals Product DepartmentSekisui Chemical Co., LtdOsakaJapan

Personalised recommendations