Skip to main content

Salivary Gland Development and Regeneration

  • Chapter
  • 941 Accesses

Abstract

Salivary glands are required for oral health and general well-being. In patients suffering from irreversible salivary hypofunction secondary to therapeutic radiation exposure or Sjögren’s syndrome, available therapies are limited to salivary gland substitutes or parasympathetic stimulants, both of which show limited efficacy. The pathophysiologic basis of radiation-induced damage involves a reduction in viable acinar cells required for physiologic function, as well as a deterioration in acinar cell morphology. Together, these alterations lead to irreversible salivary gland dysfunction. Therefore, it is imperative to prevent damage to these acinar cells and to recover lost function of those cells after exposure to radiation. This chapter provides a brief overview of the current strategies being implemented for the prevention of radiation-induced damage, current strategies for the regeneration of acinar cells, and concludes with a basic review of salivary gland anatomy and development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18:237–44.

    Article  CAS  PubMed  Google Scholar 

  2. Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol. 2014;0:52–60.

    Google Scholar 

  3. Pedersen AM, Bardow A, Jensen SB, Nauntofte B. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 2002;8:117–29.

    Article  CAS  PubMed  Google Scholar 

  4. Baum BJ. Prospects for re-engineering salivary glands. Adv Dent Res. 2000;14:84–8.

    Article  CAS  PubMed  Google Scholar 

  5. Lombaert IMA, Knox SM, Hoffman MP. Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Dis. 2011;17:445–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Eisbruch A, Ten Haken RK, Kim HM, Marsh LH, Ship JA. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys. 1999;45:577–87.

    Article  CAS  PubMed  Google Scholar 

  7. Saarilahti K, Kouri M, Collan J, Kangasmäki A, Atula T, Joensuu H, et al. Sparing of the submandibular glands by intensity modulated radiotherapy in the treatment of head and neck cancer. Radiother Oncol. 2006;78:270–5.

    Article  PubMed  Google Scholar 

  8. Vergeer MR, Doornaert PA, Rietveld DH, Leemans CR, Slotman BJ, Langendijk JA. Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves health-related quality of life: results of a nonrandomized prospective study using a standardized follow-up program. Int J Radiat Oncol Biol Phys. 2009;74:1–8. Elsevier Ltd.

    Article  PubMed  Google Scholar 

  9. Feng J, van der Zwaag M, Stokman MA, van Os R, Coppes RP. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92:466–71. Elsevier Ireland Ltd.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Guo C-B, Zhang L, Wang Y, Peng X, Mao C, et al. Prevention of radiation-induced xerostomia by submandibular gland transfer. Head Neck. 2011;34:937–42.

    Article  PubMed  Google Scholar 

  11. Seikaly H, Jha N, McGaw T, Coulter L, Liu R, Oldring D. Submandibular gland transfer: a new method of preventing radiation-induced xerostomia. Laryngoscope. 2001;111:347–52.

    Article  CAS  PubMed  Google Scholar 

  12. Sood AJ, Fox NF, O’Connell BP, Lovelace TL, Nguyen SA, Sharma AK, et al. Salivary gland transfer to prevent radiation-induced xerostomia: a systematic review and meta-analysis. Oral Oncol. 2014;50:77–83. Elsevier Ltd.

    Article  PubMed  Google Scholar 

  13. Davies AN, Shorthose K. Parasympathomimetic drugs for the treatment of salivary gland dysfunction due to radiotherapy. Cochrane Database Syst Rev. 2007;18(3).

    Google Scholar 

  14. Coppes RP, Zeilstra LJ, Kampinga HH, Konings AW. Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists. Br J Cancer. 2001;85:1055–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Johnson LR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD. Physiology of the gastrointestinal tract. 5th ed. London: Academic Press; 2012.

    Google Scholar 

  16. Bui DT. Anatomy, function, and evaluation of the salivary glands. New York: Springer; 2007. p. 1–16.

    Google Scholar 

  17. Jaskoll T, Melnick M. Embryonic Salivary Gland Branching Morphogenesis. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK6103/.

  18. Pringle S, van Os R, Coppes RP. Concise review: adult salivary gland stem cells and a potential therapy for xerostomia. Stem Cells. 2013;31:613–9.

    Article  CAS  PubMed  Google Scholar 

  19. Coppes RP, Meter A, Latumalea SP, Roffel AF, Kampinga HH. Defects in muscarinic receptor-coupled signal transduction in isolated parotid gland cells after in vivo irradiation: evidence for a non-DNA target of radiation. Br J Cancer. 2005;92(3):539–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Konings AWT, Coppes RP, Vissink A. On the mechanism of salivary gland radiosensitivity. Int J Radiat Oncol Biol Phys. 2005;62:1187–94.

    Article  CAS  PubMed  Google Scholar 

  21. Urek MM, Bralic M, Tomac J, Borcic J, Uhac I, Glazar I, et al. Early and late effects of X-Irradiation on submandibular gland: a morphological study in mice. Arch Med Res. 2005;36:339–43.

    Article  CAS  PubMed  Google Scholar 

  22. Kojima T, Kanemaru S-I, Hirano S, Tateya I, Suehiro A, Kitani Y, et al. The protective efficacy of basic fibroblast growth factor in radiation-induced salivary gland dysfunction in mice. Laryngoscope. 2011;121(9):1870–5.

    CAS  PubMed  Google Scholar 

  23. Okazaki Y, Kagami H, Hattori T, Hishida S, Shigetomi T, Ueda M. Acceleration of rat salivary gland tissue repair by basic fibroblast growth factor. Arch Oral Biol. 2000;45:911–9.

    Article  CAS  PubMed  Google Scholar 

  24. Thula TT, Schultz G, Tran-Son-Tay R, Batich C. Effects of EGF and bFGF on irradiated parotid glands. Ann Biomed Eng. 2005;33:685–95.

    Article  PubMed  Google Scholar 

  25. Cotrim AP, Sowers A, Mitchell JB, Baum BJ. Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Mol Ther. 2007;15:2101–6.

    Article  CAS  PubMed  Google Scholar 

  26. Onimaru M. Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res. 2002;91:923–30.

    Article  CAS  PubMed  Google Scholar 

  27. Medina VA, Prestifilippo JP, Croci M, Carabajal E, Bergoc RM, Elverdin JC, et al. Histamine prevents functional and morphological alterations of submandibular glands induced by ionising radiation. Int J Radiat Biol. 2011;87:284–92.

    Article  CAS  PubMed  Google Scholar 

  28. Lee H-J, Lee Y-J, Kwon H-C, Bae S, Kim S-H, Min J-J, et al. Radioprotective effect of heat shock protein 25 on submandibular glands of rats. Am J Pathol. 2006;169:1601–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zheng C, Cotrim AP, Rowzee A, Swaim W, Sowers A, Mitchell JB, et al. Prevention of radiation-induced salivary hypofunction following hKGF gene delivery to murine submandibular glands. Clin Cancer Res. 2011;17:2842–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lombaert IMA, Brunsting JF, Wierenga PK, Kampinga HH, de Haan G, Coppes RP. Keratinocyte growth factor prevents radiation damage to salivary glands by expansion of the stem/progenitor pool. Stem Cells. 2008;26:2595–601.

    Article  CAS  PubMed  Google Scholar 

  31. Spiegelberg L, Braks J, Djasim UM, Farrell E, van der Wal K, Wolvius EB. Effects of hyperbaric oxygen therapy on the viability of irradiated soft head and neck tissues in mice. Oral Dis. 2014;20(3):e111–9.

    Article  CAS  PubMed  Google Scholar 

  32. Lombaert IMA, Brunsting JF, Wierenga PK, Kampinga HH, de Haan G, Coppes RP. Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation. Clin Cancer Res. 2008;14:7741–50.

    Article  CAS  PubMed  Google Scholar 

  33. Spiegelberg L, Djasim UM, van Neck JW, Wolvius EB, van der Wal KGH. The effects of heparan sulphate mimetic RGTA-OTR4120 on irradiated murine salivary glands. J Oral Pathol Med. 2012;41:477–83.

    Article  CAS  PubMed  Google Scholar 

  34. Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A, et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol. 2000;18:3339–45.

    CAS  PubMed  Google Scholar 

  35. Baum BJ, Zheng C, Alevizos I, Cotrim AP, Liu S, McCullagh L, et al. Development of a gene transfer-based treatment for radiation-induced salivary hypofunction. Oral Oncol. 2010;46:4–8. Elsevier Ltd.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L, et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci U S A. 2012;109:19403–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Pradhan-Bhatt S, Harrington DA, Duncan RL, Jia X, Witt RL, Farach-Carson MC. Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters. Tissue Eng Part A. 2013;19:1610–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pradhan S, Liu C, Zhang C, Jia X, Farach-Carson MC, Witt RL. Lumen formation in three-dimensional cultures of salivary acinar cells. Otolaryngol Head Neck Surg. 2010;142:191–5.

    Article  PubMed  Google Scholar 

  39. Jean-Gilles R, Soscia D, Sequeira S, Melfi M, Gadre A, Castracane J, et al. Novel modeling approach to generate a polymeric nanofiber scaffold for salivary gland cells. J Nanotechnol Eng Med. 2010;1:031008.

    Article  PubMed Central  Google Scholar 

  40. Soscia DA, Sequeira SJ, Schramm RA, Jayarathanam K, Cantara SI, Larsen M, et al. Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters. Biomaterials. 2013;34:6773–84. Elsevier Ltd.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sequeira SJ, Soscia DA, Oztan B, Mosier AP, Jean-Gilles R, Gadre A, et al. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds. Biomaterials. 2012;33:3175–86. Elsevier Ltd.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, et al. Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2498.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lombaert IMA. Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res. 2006;12:1804–12.

    Article  CAS  PubMed  Google Scholar 

  44. Sumita Y, Liu Y, Khalili S, Maria OM, Xia D, Key S, et al. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol. 2011;43:80–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Tran SD, Sumita Y, Khalili S. Bone marrow-derived cells: a potential approach for the treatment of xerostomia. Int J Biochem Cell Biol. 2011;43:5–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kojima T, Kanemaru S-I, Hirano S, Tateya I, Ohno S, Nakamura T, et al. Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. Laryngoscope. 2011;121(9):1864–9.

    PubMed  Google Scholar 

  47. Lim J-Y, Ra JC, Shin IS, Jang YH, An H-Y, Choi J-S, et al. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. Deutsch E, editor. PLoS One. 2013;8:e71167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lombaert IMA, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. Connon CJ, editor. PLoS One. 2008;3:e2063.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Nanduri LSY, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol. 2011;99:367–72.

    Article  CAS  PubMed  Google Scholar 

  50. Jeong J, Baek H, Kim Y-J, Choi Y, Lee H, Lee E, et al. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med. 2013;45:e58–7. Nature Publishing Group.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Hirota M. Human salivary gland stem/progenitor cells remain dormant even after irradiation. Int J Mol Med. 2009;24:361–6.

    Article  PubMed  Google Scholar 

  52. Schwarz S, Rotter N. Human salivary gland stem cells: isolation, propagation, and characterization. In: Methods in molecular biology. Totowa: Humana Press; 2012. p. 403–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Kojima MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kojima, T. (2015). Salivary Gland Development and Regeneration. In: Ito, J. (eds) Regenerative Medicine in Otolaryngology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54856-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54856-0_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54855-3

  • Online ISBN: 978-4-431-54856-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics