Skip to main content

Abstract

The laryngeal framework consists of complex tissues including the thyroid cartilage, cricoid cartilage, and arytenoid cartilage. This framework contributes to protecting the inner aerodynamic tract from external impact and aids in maximizing vocal fold motion through intra-laryngeal muscular contraction. This structure is affected by malignant tumors, laryngeal trauma, congenital anomalies, stenosis, or intractable inflammatory diseases. Once this rigid structure is damaged, restoration of mechanical power sufficient to compensate for normal laryngeal function is quite difficult. Conventionally, laryngeal defects have been reconstructed with autologous tissues or flaps. These reconstructive surgeries, however, required donor tissue, skilled technique and multiple surgeries. Locoregional blood supply also had to be carefully considered to maintain living donor tissue. Tissue regeneration strategies for the laryngeal framework, therefore, have been sought to alleviate these problems. Recently, tissue engineering has attracted great attention as a means of recreating organs. There are three fundamental components in tissue engineering: cells, scaffolds, and growth factors. Among these, scaffolds play a central role in laryngeal framework regeneration because great mechanical power is required immediately after surgery to maintain airway structure. In situ tissue engineering techniques, which allow in vivo regeneration of organs through the application of scaffolds, have shown recent advancement due to biomaterial innovations. In this chapter, current progress and limitations of laryngeal framework regeneration will be discussed. To date, intraluminal epithelialization and subepithelial tissue regeneration have achieved some success after laryngeal resection. Research into the next steps, including functional tissue regeneration and development of suitable scaffolds for children, is now warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey BJ. Glottic reconstruction after hemilaryngectomy: bipedicle muscle flap laryngoplasty. Laryngoscope. 1975;85(6):960–77. doi:10.1288/00005537-197506000-00005.

    Article  CAS  PubMed  Google Scholar 

  2. Calcaterra TC. Bilateral omohyoid muscle flap reconstruction for anterior commissure cancer. Laryngoscope. 1987;97(7 Pt 1):810–3.

    CAS  PubMed  Google Scholar 

  3. Hirano M. A technique for glottic reconstruction following vertical partial laryngectomy. Auris Nasus Larynx. 1978;5(2):63–70.

    Article  CAS  PubMed  Google Scholar 

  4. Eliachar I, Roberts JK, Hayes JD, Levin HL, Tucker HM. Laryngotracheal reconstruction. Sternohyoid myocutaneous rotary door flap. Arch Otolaryngol Head Neck Surg. 1987;113(10):1094–7.

    Article  CAS  PubMed  Google Scholar 

  5. Schuller DE, Mountain RE, Nicholson RE, Bier-Laning CM, Powers B, Repasky M. One-stage reconstruction of partial laryngopharyngeal defects. Laryngoscope. 1997;107(2):247–53.

    Article  CAS  PubMed  Google Scholar 

  6. Kojima H, Omori K, Fujita A, Nonomura M. Thyroid gland flap for glottic reconstruction after vertical laryngectomy. Am J Otolaryngol. 1990;11(5):328–31.

    Article  CAS  PubMed  Google Scholar 

  7. Zur KB, Urken ML. Vascularized hemitracheal autograft for laryngotracheal reconstruction: a new surgical technique based on the thyroid gland as a vascular carrier. Laryngoscope. 2003;113(9):1494–8.

    Article  PubMed  Google Scholar 

  8. Duncavage JA, Toohill RJ, Isert DR. Composite nasal septal graft reconstruction of the partial laryngectomized canine. Otolaryngology. 1978;86(2):ORL285–90.

    CAS  PubMed  Google Scholar 

  9. Butcher 2nd RB, Dunham M. Composite nasal septal cartilage graft for reconstruction after extended frontolateral hemilaryngectomy. Laryngoscope. 1984;94(7):959–62.

    Article  PubMed  Google Scholar 

  10. Burgess LP, Quilligan JJ, Yim DW. Thyroid cartilage flap reconstruction of the larynx following vertical partial laryngectomy: a preliminary report in two patients. Laryngoscope. 1985;95(10):1258–61.

    Article  CAS  PubMed  Google Scholar 

  11. Andrews RJ, Sercarz JA, Ye M, Calcaterra TC, Kreiman J, Berke GS. Vocal function following vertical hemilaryngectomy: comparison of four reconstruction techniques in the canine. Ann Otol Rhinol Laryngol. 1997;106(4):261–70.

    Article  CAS  PubMed  Google Scholar 

  12. Strome S, Sloman-Moll E, Samonte BR, Wu J, Strome M. Rat model for a vascularized laryngeal allograft. Ann Otol Rhinol Laryngol. 1992;101(11):950–3.

    Article  CAS  PubMed  Google Scholar 

  13. Anthony JP, Allen DB, Trabulsy PP, Mahdavian M, Mathes SJ. Canine laryngeal transplantation: preliminary studies and a new heterotopic allotransplantation model. Eur Arch Otorhinolaryngol. 1995;252(4):197–205.

    Article  CAS  PubMed  Google Scholar 

  14. Birchall MA, Bailey M, Barker EV, Rothkotter HJ, Otto K, Macchiarini P. Model for experimental revascularized laryngeal allotransplantation. Br J Surg. 2002;89(11):1470–5. doi:10.1046/j.1365-2168.2002.02234.x.

    Article  CAS  PubMed  Google Scholar 

  15. Shipchandler TZ, Lott DG, Lorenz RR, Friedman AD, Dan O, Strome M. New mouse model for studying laryngeal transplantation. Ann Otol Rhinol Laryngol. 2009;118(6):465–8.

    PubMed  Google Scholar 

  16. Strome M, Stein J, Esclamado R, Hicks D, Lorenz RR, Braun W, et al. Laryngeal transplantation and 40-month follow-up. N Engl J Med. 2001;344(22):1676–9. doi:10.1056/nejm200105313442204.

    Article  CAS  PubMed  Google Scholar 

  17. Green Jr WT. Behavior of articular chondrocytes in cell culture. Clin Orthop Relat Res. 1971;75:248–60.

    Article  PubMed  Google Scholar 

  18. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  19. Teramachi M, Kiyotani T, Takimoto Y, Nakamura T, Shimizu Y. A new porous tracheal prosthesis sealed with collagen sponge. ASAIO J. 1995;41(3):M306–10.

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura T, Teramachi M, Sekine T, Kawanami R, Fukuda S, Yoshitani M, et al. Artificial trachea and long term follow-up in carinal reconstruction in dogs. Int J Artif Organs. 2000;23(10):718–24.

    CAS  PubMed  Google Scholar 

  21. Hori Y, Nakamura T, Matsumoto K, Kurokawa Y, Satomi S, Shimizu Y. Experimental study on in situ tissue engineering of the stomach by an acellular collagen sponge scaffold graft. ASAIO J. 2001;47(3):206–10.

    Article  CAS  PubMed  Google Scholar 

  22. Hori Y, Nakamura T, Kimura D, Kaino K, Kurokawa Y, Satomi S, et al. Functional analysis of the tissue-engineered stomach wall. Artif Organs. 2002;26(10):868–72. doi:aor7006 [pii].

    Article  PubMed  Google Scholar 

  23. Hori Y, Nakamura T, Matsumoto K, Kurokawa Y, Satomi S, Shimizu Y. Tissue engineering of the small intestine by acellular collagen sponge scaffold grafting. Int J Artif Organs. 2001;24(1):50–4.

    CAS  PubMed  Google Scholar 

  24. Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol. 2005;114(6):429–33.

    Article  PubMed  Google Scholar 

  25. Huber JE, Spievack A, Simmons-Byrd A, Ringel RL, Badylak S. Extracellular matrix as a scaffold for laryngeal reconstruction. Ann Otol Rhinol Laryngol. 2003;112(5):428–33.

    Article  PubMed  Google Scholar 

  26. Omori K, Nakamura T, Kanemaru S, Kojima H, Magrufov A, Hiratsuka Y, et al. Cricoid regeneration using in situ tissue engineering in canine larynx for the treatment of subglottic stenosis. Ann Otol Rhinol Laryngol. 2004;113(8):623–7.

    Article  PubMed  Google Scholar 

  27. Yamashita M, Omori K, Kanemaru S, Magrufov A, Tamura Y, Umeda H, et al. Experimental regeneration of canine larynx: a trial with tissue engineering techniques. Acta Otolaryngol Suppl. 2007;(557):66–72. doi:10.1080/00016480601068014. 773406446 [pii].

  28. Omori K, Nakamura T, Kanemaru S, Magrufov A, Yamashita M, Shimizu Y. In situ tissue engineering of the cricoid and trachea in a canine model. Ann Otol Rhinol Laryngol. 2008;117(8):609–13.

    Article  PubMed  Google Scholar 

  29. Yamashita M, Kanemaru S, Hirano S, Umeda H, Kitani Y, Omori K, et al. Glottal reconstruction with a tissue engineering technique using polypropylene mesh: a canine experiment. Ann Otol Rhinol Laryngol. 2010;119(2):110–7.

    Article  PubMed  Google Scholar 

  30. Kitani Y, Kanemaru S, Umeda H, Suehiro A, Kishimoto Y, Hirano S, et al. Laryngeal regeneration using tissue engineering techniques in a canine model. Ann Otol Rhinol Laryngol. 2011;120(1):49–56.

    Article  PubMed  Google Scholar 

  31. Kitamura M, Hirano S, Kanemaru SI, Kitani Y, Ohno S, Kojima T, et al. Glottic regeneration with a tissue-engineering technique, using acellular extracellular matrix scaffold in a canine model. J Tissue Eng Regen Med. 2014. doi:10.1002/term.1855.

    PubMed  Google Scholar 

  32. Ruoslahti E, Hayman EG, Pierschbacher MD. Extracellular matrices and cell adhesion. Arteriosclerosis. 1985;5(6):581–94.

    Article  CAS  PubMed  Google Scholar 

  33. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997;67(4):478–91. doi:10.1002/(SICI)1097-4644(19971215)67:4<478::AID-JCB6>3.0.CO;2-P [pii].

    Article  CAS  PubMed  Google Scholar 

  34. Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24.

    CAS  PubMed  Google Scholar 

  35. Ringel RL, Kahane JC, Hillsamer PJ, Lee AS, Badylak SF. The application of tissue engineering procedures to repair the larynx. J Speech Lang Hear Res. 2006;49(1):194–208. doi:10.1044/1092-4388(2006/016).

    Article  PubMed  Google Scholar 

  36. Baiguera S, Gonfiotti A, Jaus M, Comin CE, Paglierani M, Del Gaudio C, et al. Development of bioengineered human larynx. Biomaterials. 2011;32(19):4433–42. doi:10.1016/j.biomaterials.2011.02.055. S0142-9612(11)00232-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  37. Hou N, Cui P, Luo J, Ma R, Zhu L. Tissue-engineered larynx using perfusion-decellularized technique and mesenchymal stem cells in a rabbit model. Acta Otolaryngol. 2011;131(6):645–52. doi:10.3109/00016489.2010.547517.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura T, Sato T, Araki M, Ichihara S, Nakada A, Yoshitani M, et al. In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea. J Thorac Cardiovasc Surg. 2009;138(4):811–9. doi:10.1016/j.jtcvs.2008.07.072. S0022-5223(09)00407-3 [pii].

    Article  PubMed  Google Scholar 

  39. Kanemaru S, Hirano S, Umeda H, Yamashita M, Suehiro A, Nakamura T, et al. A tissue-engineering approach for stenosis of the trachea and/or cricoid. Acta Otolaryngol Suppl. 2010;563:79–83. doi:10.3109/00016489.2010.496462.

    Article  CAS  PubMed  Google Scholar 

  40. Tan A, Cheng S, Cui P, Gao P, Luo J, Fang C, et al. Experimental study on an airway prosthesis made of a new metastable β-type titanium alloy. J Thorac Cardiovasc Surg. 2011;141(4):888–94. doi:10.1016/j.jtcvs.2010.09.042.

    Article  CAS  PubMed  Google Scholar 

  41. Wambach BA, Cheung H, Josephson GD. Cartilage tissue engineering using thyroid chondrocytes on a type I collagen matrix. Laryngoscope. 2000;110(12):2008–11.

    Article  CAS  PubMed  Google Scholar 

  42. Katic V, Majstorovic L, Maticic D, Pirkic B, Yin S, Kos J, et al. Biological repair of thyroid cartilage defects by osteogenic protein-1 (bone morphogenetic protein-7) in dog. Growth Factors. 2000;17(3):221–32.

    Article  CAS  PubMed  Google Scholar 

  43. Tcacencu I, Carlsoo B, Stierna P. Structural characteristics of repair tissue of cricoid cartilage defects treated with recombinant human bone morphogenetic protein-2. Wound Repair Regen. 2004;12(3):346–50. doi:10.1111/j.1067-1927.2004.012307.x.

    Article  PubMed  Google Scholar 

  44. Nomoto Y, Okano W, Imaizumi M, Tani A, Nomoto M, Omori K. Bioengineered prosthesis with allogenic heterotopic fibroblasts for cricoid regeneration. Laryngoscope. 2012;122(4):805–9. doi:10.1002/lary.22416.

    Article  PubMed  Google Scholar 

  45. Omori K, Tada Y, Suzuki T, Nomoto Y, Matsuzuka T, Kobayashi K, et al. Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea. Ann Otol Rhinol Laryngol. 2008;117(9):673–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Yamashita MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yamashita, M., Kitani, Y., Kanemaru, Si. (2015). Laryngeal Framework Regeneration. In: Ito, J. (eds) Regenerative Medicine in Otolaryngology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54856-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54856-0_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54855-3

  • Online ISBN: 978-4-431-54856-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics