Electron Correlation

  • Takao Tsuneda


This chapter surveys electron correlation, which should be incorporated to reproduce chemical reactions and chemical properties correctly. First, the origin of electron correlation is clarified, with the introduction of the second-order density matrix, in Sect. 3.1. The dynamical and nondynamical correlations, which should be included in a balanced manner, are then reviewed, with an explanation of the cause for these correlations, in Sect. 3.2. As the fundamental approach to incorporate electron correlation, the configuration interaction method and the derived multiconfigurational method are explained in Sect. 3.3. The Brillouin theorem, which establishes that singly-excited configurations have no contribution, is derived in order to consider configuration interactions in Sect. 3.4. Finally, advanced correlation theories such as coupled-cluster and multireference methods are briefly reviewed to inform the reader of the present status of ab initio wavefunction theories in Sect. 3.5.


Electron Correlation Configuration Interaction Slater Determinant Couple Cluster Method Density Matrix Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersson, K., Malmqvist, P.A., Roos, B.O., Sadlej, A.J., Wolinski, K.: J. Phys. Chem. 94, 5483–5488 (1990)CrossRefGoogle Scholar
  2. Brillouin, L.: Actual. Sci. Ind. 71, 159–160 (1934)Google Scholar
  3. C̆íz̆ek, J.: J. Chem. Phys. 45, 4256–4266 (1966)Google Scholar
  4. Condon, E.U.: Phys. Rev. 36, 1121–1133 (1930)CrossRefGoogle Scholar
  5. Frenkel, J.: Wave Mechanics: Advanced General Theory. Clarendon Press, Oxford (1934)Google Scholar
  6. Frye, D., Preiskorn, A., Lie, G.C., Clementi, E.: In: Clementi, E. (ed.) MOTECC Modern Techniques in Computational Chemistry. ESCOM, Leiden (1990)Google Scholar
  7. Hirao, K.: Chem. Phys. Lett. 190, 374–380 (1992)CrossRefGoogle Scholar
  8. Hylleraas, E.A.: Z. Phys. 54, 347–366 (1929)CrossRefGoogle Scholar
  9. Kato, T.: Commun. Pure Appl. Math. 10, 151–177 (1957)CrossRefGoogle Scholar
  10. Klopper, W., Manby, F.R., Ten-no, S., Valeev, E.F.: Int. Rev. Phys. Chem. 25, 427–468 (2006)CrossRefGoogle Scholar
  11. Kurashige, Y., Yanai, T.: J. Chem. Phys. 130, 234114(1–21) (2009)Google Scholar
  12. Kutzelnigg, W.: Theor. Chem. Acc. 68, 445–469 (1985)CrossRefGoogle Scholar
  13. Kutzelnigg, W.: J. Chem. Phys. 94, 1985–2001 (1991)CrossRefGoogle Scholar
  14. Löwdin, P.-O.: Phys. Rev. 97, 1509–1520 (1955)CrossRefGoogle Scholar
  15. McWeeny, R.: Methods of Molecular Quantum Mechanics, 2nd edn. Academic, San Diego (1992)Google Scholar
  16. Møller, C., Plesset, M.S.: Phys. Rev. 46, 618–622 (1934)CrossRefGoogle Scholar
  17. Nakano, H.: J. Chem. Phys. 99, 7983–7992 (1993)CrossRefGoogle Scholar
  18. Nakatsuji, H., Hirao, K.: J. Chem. Phys. 68, 2053–2065 (1978)CrossRefGoogle Scholar
  19. Pople, J.A., Seeger, R., Krishnan, R.: Int. J. Quantum Chem. 12, 149–163 (1977)CrossRefGoogle Scholar
  20. Roos, B.O., Taylor, P.R., Siegbahn, P.E.M.: Chem. Phys. 48, 157–173 (1980)CrossRefGoogle Scholar
  21. Sinanoğlu, O.: Adv. Chem. Phys. 6, 315–412 (1964)Google Scholar
  22. Slater, J.C.: Phys. Rev. 34, 1293–1322 (1929)CrossRefGoogle Scholar
  23. Ten-no, S.: Chem. Phys. Lett. 398, 56–61 (2004)CrossRefGoogle Scholar
  24. White, S.R.: Phys. Rev. Lett. 69, 2863–2866 (1992)CrossRefGoogle Scholar
  25. White, S.R., Martin, R.L.: J. Chem. Phys. 110, 4127–4130 (1999)CrossRefGoogle Scholar
  26. Whitten, J.L., Hackmeyer, M.: J. Chem. Phys. 51, 5584–5596 (1969)CrossRefGoogle Scholar
  27. Yanai, T., Chan, G.K.: J. Chem. Phys. 124, 194106(1–16) (2006)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Takao Tsuneda
    • 1
  1. 1.University of YamanashiKofuJapan

Personalised recommendations