Advertisement

Introduction

Chapter
  • 143 Downloads
Part of the Evolutionary Economics and Social Complexity Science book series (EESCS, volume 21)

Abstract

Our societies have shifted from labor-intensive to knowledge-intensive economies, and thus, firms consider knowledge to be the essence of competitiveness [26, 31, 44] and must strive to determine how they can create knowledge [14, 24, 55]. Although knowledge is ultimately created by individuals [16], we can consider different levels of actors, not only individuals but also organizations or groups of them [55]. Since actors are influenced by outside factors, studying what elements affect actors and how is an important issue.

References

  1. 1.
  2. 2.
  3. 3.
    Arbia G, Espa G, Quah D. A class of spatial econometric methods in the empirical analysis of clusters of firms in the space. Empir Econ. 2008;34(1):81–103.zbMATHCrossRefGoogle Scholar
  4. 4.
    Arzaghi M, Henderson JV. Networking off Madison avenue. Rev Econ Stud. 2008;75(4):1011–38.zbMATHCrossRefGoogle Scholar
  5. 5.
    Barabási A-L. Network science. New York: Cambridge University Press; 2016.zbMATHGoogle Scholar
  6. 6.
    Barabási AL, Albert R. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74:47–97.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.CrossRefGoogle Scholar
  8. 8.
    Berliant M, Fujita M. Knowledge creation as a square dance on the Hilbert cube. Int Econ Rev. 2008;49(4):1251–95.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bowler PJ, Morus IR. Making modern science: a historical survey. Chicago: University of Chicago Press; 2005.CrossRefGoogle Scholar
  10. 10.
    Cairncross F. The death of distance: how the communications revolution is changing our lives. Boston: Harvard Business School Press; 2001. ISBN: 9781578514380.Google Scholar
  11. 11.
    Carlino GA, et al. The agglomeration of R&D labs. Working Paper Series 12–22. Federal Reserve Bank of Philadelphia; 2012.Google Scholar
  12. 12.
    Chesbrough HW. Open innovation. Boston: Harvard Business School; 2003.Google Scholar
  13. 13.
    Chessa A, et al. Is Europe evolving toward an integrated research area? Science. 2013;339(6120):650–1.CrossRefGoogle Scholar
  14. 14.
    Czarnitzki D. An empirical test of the asymmetric models on innovative activity: who invests more into R&D, the incumbent or the challenger? J Econ Behav Organ. 2004;54(2):153–73.CrossRefGoogle Scholar
  15. 15.
    Delmestri G, Montanari F, Usai A. Reputation and strength of ties in predicting commercial success and artistic merit of independents in the italian feature film industry*. J Manage Stud. 2005;42(5):975–1002.CrossRefGoogle Scholar
  16. 16.
    Drucker P. The age of discontinuity: guidelines to our changing society. New Brunswick: Transaction Publishers; 1992.Google Scholar
  17. 17.
    Duranton G, Overman HG. Testing for localization using micro-geographic data. Rev Econ Stud. 2005;72(4):1077–106.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ellison G, Glaeser EL, Kerr WR. What causes industry agglomeration? Am Econ Rev. 2010;105:889–927.Google Scholar
  19. 19.
    Fleming L, Sorenson O. Technology as a complex adaptive system: evidence from patent data. Res Policy. 2001;30:1019–39.CrossRefGoogle Scholar
  20. 20.
    Fleming L, King III C, Juda AI. Small worlds and regional innovation. Org Sci. 2007;18(6):938–54.CrossRefGoogle Scholar
  21. 21.
    Fleming L, Mingo S, Chen D. Collaborative brokerage, generative creativity, and creative success. Adm Sci Q. 2007;52(3):443–75.CrossRefGoogle Scholar
  22. 22.
    Forti E, Franzoni C, Sobrero M. Bridges or isolates? Investigating the social networks of academic inventors. Res Policy 2013;42(8):1378–88.CrossRefGoogle Scholar
  23. 23.
    Gautam A. Collaboration networks, structural holes, and innovation: a longitudinal study. Adm Sci Q. 2000;45(3):425–55.CrossRefGoogle Scholar
  24. 24.
    Geroski P, Machin S, Reenen JV. The profitability of innovating firms. RAND J Econ. 1993;24(2):198–211.CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Brambila CN, Veloso FM, Krackhardt D. The impact of network embeddedness on research output. Res Policy. 2013;42(9):1555–67.CrossRefGoogle Scholar
  26. 26.
    Grant RM. Toward a knowledge-based theory of the firm. Strateg Manag J. 1996;17:109–22.CrossRefGoogle Scholar
  27. 27.
    Griffith R, Lee S, Van Reenen J. Is distance dying at last? Falling home bias in fixed-effects models of patent citations. Quant Econ. 2011;2(2):211–49.zbMATHCrossRefGoogle Scholar
  28. 28.
    Griliches Z. R&D and productivity-the economic evidence. Chicago: The University of Chicago Press; 1998.CrossRefGoogle Scholar
  29. 29.
    Guimera R, et al. Team assembly mechanisms determine collaboration network structure and team performance. Science. 2005;308(5722):697–702.CrossRefGoogle Scholar
  30. 30.
    Hagedoorn J, Kranenburg HV, Osborn RN. Joint patenting amongst companies – exploring the effects of interfirm R&D partnering and experience. Manag Decis Econ. 2003;24:71–84.CrossRefGoogle Scholar
  31. 31.
    Hall BH, Jaffe AB, Trajtenberg M. The NBER patent citations data file: lessons, insights and methodological tools. National Bureau of Economic Research Working Paper 8498. 2001.Google Scholar
  32. 32.
    Hausler J, Hohn H-W, Lutz S, et al. Contingencies of innovative networks: a case study of successful interfirm R&D collaboration. Res Policy. 1994;23(1):47–66.CrossRefGoogle Scholar
  33. 33.
    Hicks D, et al. Research excellence and patented innovation. Sci Public Policy. 2000;27(5):310–20.CrossRefGoogle Scholar
  34. 34.
    Hoekman J, Frenken K, Van Oort F. The geography of collaborative knowledge production in Europe. Ann Reg Sci. 2009;43(3):721–38.CrossRefGoogle Scholar
  35. 35.
    Jaffe AB, Trajtenberg M, Henderson R. Geographic localization of knowledge spillovers as evidenced by patent citations. Q J Econ. 1993;108(3):577–98.CrossRefGoogle Scholar
  36. 36.
    Jones BF. The burden of knowledge and the ‘Death of the renaissance man’: is innovation getting harder? NBER Working Paper Series. 2005.Google Scholar
  37. 37.
    Kerr WR, Kominers SD. Agglomerative forces and cluster shapes. Rev Econ Stat. 2015;97(4):877–99.CrossRefGoogle Scholar
  38. 38.
    Kozlowski SWJ, Bell BS. Work groups and teams in organizations. In: Borman WC, Ilgen DR, Klimoski RJ, editors. Handbook of psychology. New York: Wiley; 2003, vol. 12, p. 333–75.Google Scholar
  39. 39.
    Lai R, D’Amour A, Yu A, Sun Y, Fleming L. Disambiguation and Co-authorship Networks of the U.S. Patent Inventor Database (1975–2010); 2011.Google Scholar
  40. 40.
    Laursen K, Salter A. Open for innovation: the role of openness in explaining innovation performance among U.K. manufacturing firms. Strateg Manag J. 2006;27(2):131–50.CrossRefGoogle Scholar
  41. 41.
    Marcon E, Puech F. Evaluating the geographic concentration of industries using distance-based methods. J Econ Geogr. 2003;3(4):409–28.CrossRefGoogle Scholar
  42. 42.
    Marcon E, Puech F. Measures of the geographic concentration of industries: improving distance-based methods. J Econ Geogr. 2010;10(5):745–62.CrossRefGoogle Scholar
  43. 43.
    Marshall A. Principles of economics. London: Macmillan; 1920.Google Scholar
  44. 44.
    McEvily SK, Chakravarthy B. The persistence of knowledge-based advantage: an empirical test for product performance and technological knowledge. Strateg Manag J. 2002;23(4):285–305.CrossRefGoogle Scholar
  45. 45.
    Merton RK. The sociology of science: theoretical and empirical investigations. Chicago: University of Chicago Press; 1979.Google Scholar
  46. 46.
    Murata Y, et al. Localized knowledge spillovers and patent citations: a distance-based approach. Rev Econ Stat. 2014;96(5):967–85.CrossRefGoogle Scholar
  47. 47.
    Nakajima K, Saito YU, Uesugi I. Localization of interfirm transaction relationships and industry agglomeration. RIETI Discussion Paper Series, 12-E-23. 2012.Google Scholar
  48. 48.
    Newman MEJ. The structure of scientific collaboration networks. Proc Nat Acad Sci USA. 2001;98:404–9.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Newman MEJ. Coauthorship networks and patterns of scientific collaboration. Proc Nat Acad Sci USA. 2004;101:5200–5.CrossRefGoogle Scholar
  50. 50.
    Nonaka I, Lewin AY. A dynamic theory of organizational knowledge creation. Org Sci. 1994;5(1):14–37.CrossRefGoogle Scholar
  51. 51.
    Perretti F, Negro G. Mixing genres and matching people: a study in innovation and team composition in Hollywood. J Organ Behav. 2007;586:563–86.CrossRefGoogle Scholar
  52. 52.
    Pittaway L, et al. Networking and innovation: a systematic review of the evidence. Int J Manag Rev. 2004;5(3–4):137–68.CrossRefGoogle Scholar
  53. 53.
    Ponds R, Van Oort F, Frenken K. The geographical and institutional proximity of research collaboration. Pap Reg Sci. 2007;86(3):423–43.CrossRefGoogle Scholar
  54. 54.
    Porac JF, et al. Human capital heterogeneity, collaborative relationships, and publication patterns in a multidisciplinary scientific alliance: a comparative case study of two scientific teams. Res Policy. 2004;33(4):661–78. ISSN: 0048-7333. https://doi.org/10.1016/j.respol.2004.01.007.CrossRefGoogle Scholar
  55. 55.
    Porter ME. On competition. Boston: Harvard Business School Press; 1998.Google Scholar
  56. 56.
    Powell WW, Grodal S. The Oxford handbook of innovation, Chap. 3. Oxford: Oxford University Press; 2006. p. 56–85.Google Scholar
  57. 57.
    Ramasco J, Dorogovtsev S, Pastor-Satorras R. Self-organization of collaboration networks. Phys Rev E. 2004;70(30):1–10.Google Scholar
  58. 58.
    Reagans R, Zuckerman E, McEvily B. How to make the team: social networks vs. demography as criteria for designing effective teams. Adm Sci Q. 2004;49(1):101–33.Google Scholar
  59. 59.
    Rosenthal SS, Strange WC. The determinants of agglomeration. J Urban Econ. 2001;50(2):191–229.CrossRefGoogle Scholar
  60. 60.
    Rosenthal SS, Strange WC. Geography, industrial organization, and agglomeration. Rev Econ Stat. 2003;85(2):377–93.CrossRefGoogle Scholar
  61. 61.
    Schwab A, Miner AS. Learning in hybrid-project systems: the effects of project performance on repeated collaboration. Acad Manag J. 2008;51:1117–49.CrossRefGoogle Scholar
  62. 62.
    Simonton DK. Scientific genius: a psychology of science. Cambridge: Cambridge University Press; 1988.Google Scholar
  63. 63.
    Skilton PF, Dooley KJ. The effects of repeat collaboration on creative abrasion. Acad Manag Rev. 2010;35(1):118–134. ISSN: 0363-7425.  https://doi.org/10.5465/AMR.2010.45577886.Google Scholar
  64. 64.
    Tamada S, Kodama F, Gemba K. A study on science linkage of Japanese patents; an analysis on patents in the field of genetic technology by constructing a citation database. J Sci Policy Res Manag. 2002;17(3/4):222–30.Google Scholar
  65. 65.
    Thompson P, Fox-Kean M. Patent citations and the geography of knowledge spillovers: a reassessment. Am Econ Rev. 2005;95(1):450–60.CrossRefGoogle Scholar
  66. 66.
    Uzzi B, Spiro J. Collaboration and creativity: the small world problem. Am J Sociol. 2005;111(2):447–504.CrossRefGoogle Scholar
  67. 67.
    Weisberg RW. Creativity: understanding innovation in problem solving, science, invention, and the arts. New York: Wiley; 2006.Google Scholar
  68. 68.
    Wuchty S, Jones BF, Uzzi B. The increasing dominance of teams in production of knowledge. Science. 2007;316(5827):1036–9.CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Graduate School of Simulation StudiesUniversity of HyogoKobeJapan

Personalised recommendations