Part of the Evolutionary Economics and Social Complexity Science book series (EESCS, volume 21)


Our societies have shifted from labor-intensive to knowledge-intensive economies, and thus, firms consider knowledge to be the essence of competitiveness [26, 31, 44] and must strive to determine how they can create knowledge [14, 24, 55]. Although knowledge is ultimately created by individuals [16], we can consider different levels of actors, not only individuals but also organizations or groups of them [55]. Since actors are influenced by outside factors, studying what elements affect actors and how is an important issue.


  1. 1.
  2. 2.
  3. 3.
    Arbia G, Espa G, Quah D. A class of spatial econometric methods in the empirical analysis of clusters of firms in the space. Empir Econ. 2008;34(1):81–103.zbMATHCrossRefGoogle Scholar
  4. 4.
    Arzaghi M, Henderson JV. Networking off Madison avenue. Rev Econ Stud. 2008;75(4):1011–38.zbMATHCrossRefGoogle Scholar
  5. 5.
    Barabási A-L. Network science. New York: Cambridge University Press; 2016.zbMATHGoogle Scholar
  6. 6.
    Barabási AL, Albert R. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74:47–97.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.CrossRefGoogle Scholar
  8. 8.
    Berliant M, Fujita M. Knowledge creation as a square dance on the Hilbert cube. Int Econ Rev. 2008;49(4):1251–95.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bowler PJ, Morus IR. Making modern science: a historical survey. Chicago: University of Chicago Press; 2005.CrossRefGoogle Scholar
  10. 10.
    Cairncross F. The death of distance: how the communications revolution is changing our lives. Boston: Harvard Business School Press; 2001. ISBN: 9781578514380.Google Scholar
  11. 11.
    Carlino GA, et al. The agglomeration of R&D labs. Working Paper Series 12–22. Federal Reserve Bank of Philadelphia; 2012.Google Scholar
  12. 12.
    Chesbrough HW. Open innovation. Boston: Harvard Business School; 2003.Google Scholar
  13. 13.
    Chessa A, et al. Is Europe evolving toward an integrated research area? Science. 2013;339(6120):650–1.CrossRefGoogle Scholar
  14. 14.
    Czarnitzki D. An empirical test of the asymmetric models on innovative activity: who invests more into R&D, the incumbent or the challenger? J Econ Behav Organ. 2004;54(2):153–73.CrossRefGoogle Scholar
  15. 15.
    Delmestri G, Montanari F, Usai A. Reputation and strength of ties in predicting commercial success and artistic merit of independents in the italian feature film industry*. J Manage Stud. 2005;42(5):975–1002.CrossRefGoogle Scholar
  16. 16.
    Drucker P. The age of discontinuity: guidelines to our changing society. New Brunswick: Transaction Publishers; 1992.Google Scholar
  17. 17.
    Duranton G, Overman HG. Testing for localization using micro-geographic data. Rev Econ Stud. 2005;72(4):1077–106.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ellison G, Glaeser EL, Kerr WR. What causes industry agglomeration? Am Econ Rev. 2010;105:889–927.Google Scholar
  19. 19.
    Fleming L, Sorenson O. Technology as a complex adaptive system: evidence from patent data. Res Policy. 2001;30:1019–39.CrossRefGoogle Scholar
  20. 20.
    Fleming L, King III C, Juda AI. Small worlds and regional innovation. Org Sci. 2007;18(6):938–54.CrossRefGoogle Scholar
  21. 21.
    Fleming L, Mingo S, Chen D. Collaborative brokerage, generative creativity, and creative success. Adm Sci Q. 2007;52(3):443–75.CrossRefGoogle Scholar
  22. 22.
    Forti E, Franzoni C, Sobrero M. Bridges or isolates? Investigating the social networks of academic inventors. Res Policy 2013;42(8):1378–88.CrossRefGoogle Scholar
  23. 23.
    Gautam A. Collaboration networks, structural holes, and innovation: a longitudinal study. Adm Sci Q. 2000;45(3):425–55.CrossRefGoogle Scholar
  24. 24.
    Geroski P, Machin S, Reenen JV. The profitability of innovating firms. RAND J Econ. 1993;24(2):198–211.CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Brambila CN, Veloso FM, Krackhardt D. The impact of network embeddedness on research output. Res Policy. 2013;42(9):1555–67.CrossRefGoogle Scholar
  26. 26.
    Grant RM. Toward a knowledge-based theory of the firm. Strateg Manag J. 1996;17:109–22.CrossRefGoogle Scholar
  27. 27.
    Griffith R, Lee S, Van Reenen J. Is distance dying at last? Falling home bias in fixed-effects models of patent citations. Quant Econ. 2011;2(2):211–49.zbMATHCrossRefGoogle Scholar
  28. 28.
    Griliches Z. R&D and productivity-the economic evidence. Chicago: The University of Chicago Press; 1998.CrossRefGoogle Scholar
  29. 29.
    Guimera R, et al. Team assembly mechanisms determine collaboration network structure and team performance. Science. 2005;308(5722):697–702.CrossRefGoogle Scholar
  30. 30.
    Hagedoorn J, Kranenburg HV, Osborn RN. Joint patenting amongst companies – exploring the effects of interfirm R&D partnering and experience. Manag Decis Econ. 2003;24:71–84.CrossRefGoogle Scholar
  31. 31.
    Hall BH, Jaffe AB, Trajtenberg M. The NBER patent citations data file: lessons, insights and methodological tools. National Bureau of Economic Research Working Paper 8498. 2001.Google Scholar
  32. 32.
    Hausler J, Hohn H-W, Lutz S, et al. Contingencies of innovative networks: a case study of successful interfirm R&D collaboration. Res Policy. 1994;23(1):47–66.CrossRefGoogle Scholar
  33. 33.
    Hicks D, et al. Research excellence and patented innovation. Sci Public Policy. 2000;27(5):310–20.CrossRefGoogle Scholar
  34. 34.
    Hoekman J, Frenken K, Van Oort F. The geography of collaborative knowledge production in Europe. Ann Reg Sci. 2009;43(3):721–38.CrossRefGoogle Scholar
  35. 35.
    Jaffe AB, Trajtenberg M, Henderson R. Geographic localization of knowledge spillovers as evidenced by patent citations. Q J Econ. 1993;108(3):577–98.CrossRefGoogle Scholar
  36. 36.
    Jones BF. The burden of knowledge and the ‘Death of the renaissance man’: is innovation getting harder? NBER Working Paper Series. 2005.Google Scholar
  37. 37.
    Kerr WR, Kominers SD. Agglomerative forces and cluster shapes. Rev Econ Stat. 2015;97(4):877–99.CrossRefGoogle Scholar
  38. 38.
    Kozlowski SWJ, Bell BS. Work groups and teams in organizations. In: Borman WC, Ilgen DR, Klimoski RJ, editors. Handbook of psychology. New York: Wiley; 2003, vol. 12, p. 333–75.Google Scholar
  39. 39.
    Lai R, D’Amour A, Yu A, Sun Y, Fleming L. Disambiguation and Co-authorship Networks of the U.S. Patent Inventor Database (1975–2010); 2011.Google Scholar
  40. 40.
    Laursen K, Salter A. Open for innovation: the role of openness in explaining innovation performance among U.K. manufacturing firms. Strateg Manag J. 2006;27(2):131–50.CrossRefGoogle Scholar
  41. 41.
    Marcon E, Puech F. Evaluating the geographic concentration of industries using distance-based methods. J Econ Geogr. 2003;3(4):409–28.CrossRefGoogle Scholar
  42. 42.
    Marcon E, Puech F. Measures of the geographic concentration of industries: improving distance-based methods. J Econ Geogr. 2010;10(5):745–62.CrossRefGoogle Scholar
  43. 43.
    Marshall A. Principles of economics. London: Macmillan; 1920.Google Scholar
  44. 44.
    McEvily SK, Chakravarthy B. The persistence of knowledge-based advantage: an empirical test for product performance and technological knowledge. Strateg Manag J. 2002;23(4):285–305.CrossRefGoogle Scholar
  45. 45.
    Merton RK. The sociology of science: theoretical and empirical investigations. Chicago: University of Chicago Press; 1979.Google Scholar
  46. 46.
    Murata Y, et al. Localized knowledge spillovers and patent citations: a distance-based approach. Rev Econ Stat. 2014;96(5):967–85.CrossRefGoogle Scholar
  47. 47.
    Nakajima K, Saito YU, Uesugi I. Localization of interfirm transaction relationships and industry agglomeration. RIETI Discussion Paper Series, 12-E-23. 2012.Google Scholar
  48. 48.
    Newman MEJ. The structure of scientific collaboration networks. Proc Nat Acad Sci USA. 2001;98:404–9.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Newman MEJ. Coauthorship networks and patterns of scientific collaboration. Proc Nat Acad Sci USA. 2004;101:5200–5.CrossRefGoogle Scholar
  50. 50.
    Nonaka I, Lewin AY. A dynamic theory of organizational knowledge creation. Org Sci. 1994;5(1):14–37.CrossRefGoogle Scholar
  51. 51.
    Perretti F, Negro G. Mixing genres and matching people: a study in innovation and team composition in Hollywood. J Organ Behav. 2007;586:563–86.CrossRefGoogle Scholar
  52. 52.
    Pittaway L, et al. Networking and innovation: a systematic review of the evidence. Int J Manag Rev. 2004;5(3–4):137–68.CrossRefGoogle Scholar
  53. 53.
    Ponds R, Van Oort F, Frenken K. The geographical and institutional proximity of research collaboration. Pap Reg Sci. 2007;86(3):423–43.CrossRefGoogle Scholar
  54. 54.
    Porac JF, et al. Human capital heterogeneity, collaborative relationships, and publication patterns in a multidisciplinary scientific alliance: a comparative case study of two scientific teams. Res Policy. 2004;33(4):661–78. ISSN: 0048-7333. Scholar
  55. 55.
    Porter ME. On competition. Boston: Harvard Business School Press; 1998.Google Scholar
  56. 56.
    Powell WW, Grodal S. The Oxford handbook of innovation, Chap. 3. Oxford: Oxford University Press; 2006. p. 56–85.Google Scholar
  57. 57.
    Ramasco J, Dorogovtsev S, Pastor-Satorras R. Self-organization of collaboration networks. Phys Rev E. 2004;70(30):1–10.Google Scholar
  58. 58.
    Reagans R, Zuckerman E, McEvily B. How to make the team: social networks vs. demography as criteria for designing effective teams. Adm Sci Q. 2004;49(1):101–33.Google Scholar
  59. 59.
    Rosenthal SS, Strange WC. The determinants of agglomeration. J Urban Econ. 2001;50(2):191–229.CrossRefGoogle Scholar
  60. 60.
    Rosenthal SS, Strange WC. Geography, industrial organization, and agglomeration. Rev Econ Stat. 2003;85(2):377–93.CrossRefGoogle Scholar
  61. 61.
    Schwab A, Miner AS. Learning in hybrid-project systems: the effects of project performance on repeated collaboration. Acad Manag J. 2008;51:1117–49.CrossRefGoogle Scholar
  62. 62.
    Simonton DK. Scientific genius: a psychology of science. Cambridge: Cambridge University Press; 1988.Google Scholar
  63. 63.
    Skilton PF, Dooley KJ. The effects of repeat collaboration on creative abrasion. Acad Manag Rev. 2010;35(1):118–134. ISSN: 0363-7425. Scholar
  64. 64.
    Tamada S, Kodama F, Gemba K. A study on science linkage of Japanese patents; an analysis on patents in the field of genetic technology by constructing a citation database. J Sci Policy Res Manag. 2002;17(3/4):222–30.Google Scholar
  65. 65.
    Thompson P, Fox-Kean M. Patent citations and the geography of knowledge spillovers: a reassessment. Am Econ Rev. 2005;95(1):450–60.CrossRefGoogle Scholar
  66. 66.
    Uzzi B, Spiro J. Collaboration and creativity: the small world problem. Am J Sociol. 2005;111(2):447–504.CrossRefGoogle Scholar
  67. 67.
    Weisberg RW. Creativity: understanding innovation in problem solving, science, invention, and the arts. New York: Wiley; 2006.Google Scholar
  68. 68.
    Wuchty S, Jones BF, Uzzi B. The increasing dominance of teams in production of knowledge. Science. 2007;316(5827):1036–9.CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Graduate School of Simulation StudiesUniversity of HyogoKobeJapan

Personalised recommendations