Skip to main content

Mechanical Characterization of Vascular Endothelial Cells Exposed to Fluid Shear Stress

  • Chapter
  • First Online:
Vascular Engineering

Abstract

Vascular endothelial cells are constantly exposed to shear stress generated by blood flow and respond by exhibiting alterations in morphology and cytoskeletal structures as well as by modulating cell physiological functions. Since endothelial cell responses to fluid shear stress have been implicated in the localization of atherosclerosis, the effects of fluid shear stress on endothelial cell morphology and functions have been exclusively studied. Interestingly, atherosclerosis occurs primarily at branching and curving regions of arterial walls, where endothelial cells would experience complex blood flow patterns. So far, a lot of efforts have been made to study endothelial mechanotransduction to flow, indicating the fact that after applying fluid shear stress, endothelial cells exhibit marked elongation and orientation in the direction of flow. The need for experimental techniques for studying endothelial cell responses to flow has lead to the development of different types of flow chambers. Conventional flow chambers include a cone-and-plate flow chamber and a parallel-plate flow chamber, while more recently, microfluidic flow chambers have emerged with a great potential for a high throughput analysis. In this chapter, many types of flow chambers are first summarized. Stiffness change of sheared endothelial cells has been be of great interest in particular for mechanical engineering researchers because endothelial cells may change their morphology and cytoskeletal structures in response to fluid shear stress. Therefore, AFM (Atomic Force Microscopy) stiffness measurement of sheared endothelial cells is then described. Lastly, stiffness change of sheared endothelial cell nuclei measured with a pipette aspiration test is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol 268:H1765–H1772

    CAS  PubMed  Google Scholar 

  • Caille N, Tardy Y, Meister J-J (1998) Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann Biomed Eng 26:409–416

    Article  CAS  PubMed  Google Scholar 

  • Caille N, Thoumine O, Tardy Y, Meister J-J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187

    Article  PubMed  Google Scholar 

  • Chau L, Doran M, Cooper-White J (2009) A novel multishear microdevice for studying cell mechanics. Lab Chip 9:1897–1902

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Fabry B, Schiffrin EL, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280:C1475–C1484

    CAS  PubMed  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224

    Article  CAS  PubMed  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deguchi S, Maeda K, Ohashi T, Sato M (2005) Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J Biomech 38:1751–1759

    Article  PubMed  Google Scholar 

  • Dewey CF, DePaola N (1989) Exploring flow-cell interactions using computatioal fluid dynamics. In: Woo SL-Y, Seguchi Y (eds) Tissue eng. ASME, New York, pp 31–33

    Google Scholar 

  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  • Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL (1972) Endothelial nuclear patterns in the canine arterial tree with p reference to hemodynamic events. Circ Res 30:23–33

    Article  CAS  PubMed  Google Scholar 

  • Fukushima S, Ngatsu A, Kaibara M, Oka K, Tanishita K (2001) Measurement of surface topography of endothelial cell and wall shear stress distribution on the cell. JSME Int J Ser C 44:972–980

    Article  Google Scholar 

  • Garin G, Berk BC (2006) Flow-mediated signaling modulates endothelial cell phenotype. Endothelium 13:375–384

    Article  CAS  PubMed  Google Scholar 

  • Guilak F (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 28:1529–1541

    Article  CAS  PubMed  Google Scholar 

  • Hazel AL, Pedley TJ (2000) Vascular endothelial cells minimize the total force on their nuclei. Biophys J 78:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmke BP, Davies PF (2002) The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann Biomed Eng 30:284–296

    Article  PubMed  Google Scholar 

  • Hsu S, Thakar R, Liepmann D, Li S (2005) Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochem Biophys Res Commun 337:401–409

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (1990) Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc Natl Acad Sci U S A 87:3579–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka N, Ujita S, Sato M (1998) Effect of flow direction on the morphological responses of cultured bovine aortic endothelial cells. Med Biol Eng Comput 36:122–128

    Article  CAS  PubMed  Google Scholar 

  • Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. Trans ASME J Biomech Eng 107:341–347

    Article  CAS  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94:849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott RE, Helmke BP (2007) Mapping the dynamics of shear stress-induced structural changes in endothelial cells. Am J Physiol Cell Physiol 293:C1616–C1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. Trans ASME J Biomech Eng 103:172–176

    Article  CAS  Google Scholar 

  • Ogunrinade O, Kameya GT, Truskey GA (2002) Effect of fluid shear stress on the permeability of the arterial endothelium. Ann Biomed Eng 30:430–446

    Article  PubMed  Google Scholar 

  • Ohashi T, Sato M (2005) Remodeling of vascular endothelial cells exposed to fluid shear stress: experimental and numerical approach. Fluid Dyn Res 37:40–59

    Article  Google Scholar 

  • Ohashi T, Sato M (2012) Chapter 22, Endothelial cell responses to fluid shear stress: from methodology to applications. In: Dias R, Martins AA, Lima R, Mata TM (eds) Single and two-phase flows on chemical and biomedical engineering. Bentham Science Publishers, Oak Park, pp 372–385

    Google Scholar 

  • Ohashi T, Sugawara H, Matsumoto T, Sato M (2000) Surface topography measurement and intracellular stress analysis of cultured endothelial cells exposed to fluid shear stress. JSME Int J Ser C 43:780–786

    Article  CAS  Google Scholar 

  • Ohashi T, Ishii Y, Ishikawa Y, Matsumoto T, Sato M (2002) Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Bio-Med Mater Eng 12:319–327

    CAS  Google Scholar 

  • Ohashi T, Hanamura K, Azuma D, Sakamoto N, Sato M (2008) Remodeling of endothelial cell nucleus exposed to three different mechanical stimuli. J Biomech Sci Eng 3(2):63–74

    Article  Google Scholar 

  • Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69:264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satcher RL Jr, Bussolari SR, Gimbrone MA Jr, Dewey CF Jr (1992) The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. Trans ASME J Biomech Eng 114:309–316

    Article  Google Scholar 

  • Sato M, Levesque MJ, Nerem RM (1987) Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arterioscler Thromb Vasc Biol 7:276–286

    Article  CAS  Google Scholar 

  • Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K (2000) Local mechanical properties measured by atomic force microscopy for cultured endothelial cells exposed to shear stress. J Biomech 33:127–135

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Matsuda K, Ishii O et al (2004) Endothelialized networks with a vascular geometry in microfabricated poly (dimethyl siloxane). Biomed Microdevices 6:269–278

    Article  CAS  PubMed  Google Scholar 

  • Theret DP, Levesque MJ, Sato M, Nerem RM, Wheeler LT (1988) The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. Trans ASME J Biomech Eng 110:190–199

    Article  CAS  Google Scholar 

  • Tsou JK, Gower RM, Ting HJ et al (2008) Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White CR, Haidekker M, Bao X, Frangos JA (2001) Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103:2508–2513

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Yamamoto Y, Liu H (2000) Computational mechanical model studies on the spontaneous emergent morphogenesis of the cultured endothelial cells. J Biomech 33:115–126

    Article  CAS  PubMed  Google Scholar 

  • Young EWK, Simmons CA (2010) Macro-and microscale fluid flow systems for endothelial cell biology. Lab Chip 10:143–160

    Article  CAS  PubMed  Google Scholar 

  • Young EWK, Wheeler AR, Simmons CA (2007) Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab Chip 7:1759–1766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Ohashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ohashi, T. (2016). Mechanical Characterization of Vascular Endothelial Cells Exposed to Fluid Shear Stress. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics