Skip to main content

Vascular Engineering of Circulatory Assist Devices

  • Chapter
  • First Online:
Vascular Engineering
  • 906 Accesses

Abstract

Heart failure is a condition in which the heart cannot pump sufficiently because its contractile force has deteriorated. Patients with heart failure can sometimes undergo heart transplantation, but in number these patients comprise less than 10 % of patients actually requiring heart transplantation. Thus, mechanical circulatory assistance plays an important role in substituting for heart transplantation wherein the pump function of the heart is assisted by an artificial blood pump called a ventricular assist device. On the other hand, cardiopulmonary bypass is a form of extracorporeal circulation that temporarily takes over the function of the heart and lungs to maintain the circulation of blood and the oxygen content of the body during surgery for heart failure and aneurysms of the thoracic aorta. This chapter describes the vascular engineering of circulatory assist devices. Particular emphasis is placed on recent progress in ventricular assist devices and cardiopulmonary bypass pumps. These important medical devices assist with human circulation at either the chronic or the acute phase. Because these devices are derived from an industrial pump, a great many studies have been conducted not only from the medical perspective but also from industrial and engineering perspectives. In this chapter, current ventricular assist devices and cardiopulmonary bypass pumps, their specifications, their classifications, and methods for their design and evaluating are presented, including flow analysis inside the pump to optimize the geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, New York

    Google Scholar 

  • Affeld K et al (1976) New methods for the in vitro investigations of the flow patterns in artificial heart. Trans Am Soc Artif Intern Organs 22:460–467

    CAS  PubMed  Google Scholar 

  • Antaki JF et al (1995) Computational flow optimization of rotary blood pump components. Artif Organs 19(7):608–615

    Article  CAS  PubMed  Google Scholar 

  • Apel J, Neudel F, Reul H (2001a) Computational fluid dynamics and experimental validation of a microaxial blood pump. ASAIO J 47(5):552–558

    Article  CAS  PubMed  Google Scholar 

  • Apel J et al (2001b) Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 25(5):341–347

    Article  CAS  PubMed  Google Scholar 

  • Araki K, Taenaka Y, Masuzawa T et al (1993) A flow visualization study centrifugal blood pumps developed for long-term usage. Artif Organs 17(5):307–312

    Article  CAS  PubMed  Google Scholar 

  • Arora D, Behr M, Pasquali M (2004) A tensor-based measure for estimating blood damage. Artif Organs 28(11):1002–1015

    Article  PubMed  Google Scholar 

  • ASTM F1841-97 (1997) Standard practice for assessment of hemolysis in continuous flow blood pumps

    Google Scholar 

  • Asztalos B, Yamane T, Nishida M (1999) Flow visualization analysis for evaluation of shear and recirculation in a new closed-type, monopivot centrifugal blood pump. Artif Organs 23(10):939–946

    Article  CAS  PubMed  Google Scholar 

  • Baldwin JT et al (1994) LDA measurements of mean velocity and Reynolds stress fields with in an artificial heart ventricle. J Biomech Eng 116:190–200

    Article  CAS  PubMed  Google Scholar 

  • Blackshear PL, Dorman FD, Steinbach JH (1965) Some mechanical effects that influence hemolysis. Trans Am Soc Artif Intern Organs 11:112–120

    Article  PubMed  Google Scholar 

  • Bludszweit C (1995) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19(7):590–596

    Article  Google Scholar 

  • Burgreen GW, Antaki JF et al (2001) Computational fluid dynamics as a development tool for rotary blood pumps. Artif Organs 25(5):336–340

    Article  CAS  PubMed  Google Scholar 

  • Burgreen GW et al (2004) Computational fluid dynamics analysis of a Maglev centrifugal left ventricular assist device. Artif Organs 28(10):874–880

    Article  PubMed  Google Scholar 

  • Butler K, Thomas D, Antaki JF et al (1997) Development of the Nimbus/Pittsburgh axial flow left ventricular assist system. Artif Organs 21(7):602–610

    Article  CAS  PubMed  Google Scholar 

  • Chan WK et al (2002) A computational study of the effects of inlet guide vanes on the performance of a centrifugal blood pump. Artif Organs 26(6):534–542

    Article  CAS  PubMed  Google Scholar 

  • Chua LP et al (2002) Gap velocity measurements of a blood pump model. Artif Organs 26(8):682–694

    Article  PubMed  Google Scholar 

  • Cooney DO (1976) Biomedical engineering principles. Dekker, New York

    Google Scholar 

  • DeBakey ME (1934) A simple continuous flow blood transfusion instrument. New Orleans Med Surg J 87:386–389

    Google Scholar 

  • Garon A, Farinas MI (2004) Fast three-dimensional numerical hemolysis approximation. Artif Organs 28(11):1016–1025

    Article  PubMed  Google Scholar 

  • Gibbon JH Jr (1937) Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch Surg 34:1150

    Article  Google Scholar 

  • Gibbon JH Jr, Miller BJ, Feinberg C (1953) An improved mechanical heart and lung apparatus. Med Clin N Am 37:1603

    Google Scholar 

  • Giersiepen M, Wurzinger LJ et al (1990) Estimation of shear stress-related blood damage in heart valve prostheses: in vitro comparison of 25 aortic valves. Int J Artif Organs 13:300–306

    CAS  PubMed  Google Scholar 

  • Gobel C et al (2001) Development of the MEDOS/HIA DeltaStream extracorporeal rotary blood pump. Artif Organs 25(5):358–365

    Article  CAS  PubMed  Google Scholar 

  • Golding LAR et al (1980) Chronic non-pulsatile blood flow in alive, awake animal 34-day survival. Trans Am Soc Artif Intern Organs 26:251–254

    CAS  PubMed  Google Scholar 

  • Goubergrits L, Affeld K (2004) Numerical estimation of blood damage in artificial organs. Artif Organs 28(5):499–507

    Article  PubMed  Google Scholar 

  • Helmus JD, Brown CH (1977) Blood cell damage by mechanical forces. In: Hwang NHC, Normann NA (eds) Cardiovascular flow dynamics and measurement. University Park Press, Baltimore, pp 799–823

    Google Scholar 

  • Heuser G (1980) A Couette viscometer for short time shearing of blood. Biorheology 17:17–24

    CAS  PubMed  Google Scholar 

  • Ikeda T, Yamane T et al (1996) A quantitative visualization study of flow in a scaled-up model of a centrifugal blood pump. Artif Organs 20(2):132–138

    Article  CAS  PubMed  Google Scholar 

  • Imachi K, Mussivand T (2010) Outline of the International Organization for Standardization Standard for circulatory support devices. Artif Organs 34:695–698

    Article  PubMed  Google Scholar 

  • ISO 14708–5 (2010) Implants for surgery: active implantable medical devices. Part 5: Circulatory support devices

    Google Scholar 

  • ISO 5198 (1987) Centrifugal, mixed flow and axial flow pumps. Code for hydraulic performance tests: precision grade

    Google Scholar 

  • Joyce DL, Joyce LD, Loebe M (eds) (2012) Mechanical circulatory support: principles and applications. McGraw-Hill, New York

    Google Scholar 

  • Japan Society of Mechanical Engineers (ed) (1988) Fundamentals of computational fluid dynamics (in Japanese). Corona, Tokyo

    Google Scholar 

  • Kawahito K, Nosé Y (1997) Hemolysis in different centrifugal pumps. Artif Organs 21:323–326

    Article  CAS  PubMed  Google Scholar 

  • Kerrigan JP, Yamazaki K et al (1996) High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device. Artif Organs 20(6):534–540

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T et al (1989) Velocity measurement of three -dimensional flow around rotating parallel disks by digital image processing. ASME FED 85:29–36

    Google Scholar 

  • Kyo S (ed) (2014) Ventricular assist devices in advanced-stage heart failure. Springer, Heidelberg

    Google Scholar 

  • Mitamura Y et al (2001) Prediction of hemolysis in rotary blood pumps with computational fluid dynamics analysis. J Congest Heart Fail Circ Support 1(4):331–336

    Google Scholar 

  • Miyazoe Y et al (1998) Computational fluid dynamic analysis to establish design process of centrifugal blood pump. Artif Organs 22(5):381–385

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi K et al (1995) Development of an axial flow ventricular assist device: in vitro and in vivo evaluation. Artif Organs 19(7):653–659

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Yano K (1999) Computational simulation of flows in an entire centrifugal heart pump. Artif Organs 23(6):572–575

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S et al (1999) Numeric flow simulation for an innovative ventricular assist system secondary impeller. ASAIO J 45(1):74–78

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Yamane T et al (1997) Quantitative visualization of flow through a centrifugal blood pump: effect of washout holes. Artif Organs 21(7):720–729

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Asztalos B, Yamane T et al (1999) Flow visualization study to improve hemocompatibility of a centrifugal blood pump. Artif Organs 23(8):697–703

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Yamane T et al (2006a) Computational fluid dynamic analysis of the flow around the pivot bearing of the centrifugal ventricular assist device. JSME Int J Ser C 49(3):837–851

    Article  Google Scholar 

  • Nishida M et al (2006b) Quantitative Analysis of shearing velocity near the wall in a centrifugal blood pump, JSME Fluids Engineering Conference 2006 (CD-ROM): 812; 1–4

    Google Scholar 

  • Oka S (1974) Biorheology (in Japanese). Shokabo, Tokyo

    Google Scholar 

  • Pinotti M, Paone N (1996) Estimating mechanical blood trauma in a centrifugal blood pump: laser Doppler anemometer measurements of the mean velocity field. Artif Organs 20(6):546–552

    Article  CAS  PubMed  Google Scholar 

  • Pinotti M, Rosa ES (1995) Computational prediction of hemolysis in a centrifugal ventricular assist device. Artif Organs 19(3):267–273

    Article  CAS  PubMed  Google Scholar 

  • Pantalos GM et al (1998) Long-term mechanical circulatory support system reliability recommendation: American Society for Artificial Internal Organs and The Society of Thoracic Surgeons: long-term mechanical circulatory support system reliability recommendation. Ann Thorac Surg 66(5):1852–9.

    Google Scholar 

  • Qian Y (2004) CFD application in Ventrassist implantable rotary blood pump design and validation. In: Proceedings, Bioengineering Conference Annual Meeting BED JSME, Kitakyushu, 22–23 January 2004, pp 259–260

    Google Scholar 

  • Qian Y, Bertram CD (2000) Computational fluid dynamics analysis of hydrodynamic bearings of the VentrAssist rotary blood pump. Artif Organs 24(6):488–491

    Article  CAS  PubMed  Google Scholar 

  • Rafferty EH et al (1968) Artificial heart II: application of nonpulsatile radially increasing pressure gradient pumping principle. Minn Med 51:191–193

    Google Scholar 

  • Reul HM, Akdis M (2000) Blood pumps for circulatory support. Perfusion 15:295–311

    Article  CAS  PubMed  Google Scholar 

  • Schima H et al (1992) Effect of stationary guiding vanes on improvement of the washout behind the rotor in centrifugal blood pumps. ASAIO J 38:220–224

    Article  Google Scholar 

  • Song X et al (2004) Quantitative evaluation of the blood damage in a centrifugal blood pump by computational fluid dynamics. J Fluids Eng 126(3):410–418

    Article  Google Scholar 

  • Stepanoff AJ (1957) Centrifugal and axial flow pumps, 2nd edn. Wiley, New York

    Google Scholar 

  • Takatani S, Matsuda H, Hanatani A, Nojiri C, Yamazaki K, Motomura T, Ohuchi K, Sakamoto T, Yamane T (2005) Mechanical circulatory support devices (MCSD) in Japan: current status and future directions. J Artif Organs 8:13–27

    Article  PubMed  Google Scholar 

  • Toyoda M et al (2002) Geometric optimization for non-thrombogenicity of a centrifugal blood pump through flow visualization. JSME Int J C45(4):1013–1019

    Article  Google Scholar 

  • Triep M et al (2006) Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump. Artif Organs 30(5):384–391

    Article  PubMed  Google Scholar 

  • Tsukamoto Y et al (2001) Computational fluid dynamics analysis for centrifugal blood pumps. J Congest Heart Fail Circ Support 1(4):337–343

    Google Scholar 

  • Tsukiya T, Taenaka Y et al (2002) Improvement of washout flow in a centrifugal blood pump by a semi-open impeller. ASAIO J 48(1):76–82

    Article  PubMed  Google Scholar 

  • Umezu M et al (1992) The effects of inter shapes of plastic connectors on blood in a extracorporeal circulation. In: Proceedings, 7th International Conference on Biomedical Engineering, Singapore, 2–4 December 1992, pp 197–199

    Google Scholar 

  • Wells RE, Merrill EW, Gabelnick H (1962) Shear-rate dependence of viscosity of blood: interaction of red cells and plasma proteins. Trans Soc Rheol 6:19–24

    Article  CAS  Google Scholar 

  • Wood HG et al (1999) Numerical solution for blood flow in a centrifugal assist device. Int J Artif Organs 22(12):827–836

    CAS  PubMed  Google Scholar 

  • Wurzinger LJ et al (1985) Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb Haemost 54:381–386

    CAS  PubMed  Google Scholar 

  • Yamane T (2002) The present and future state of nonpulsatile artificial heart technology. J Artif Organs 5:149–155

    Article  Google Scholar 

  • Yamane T et al (2010) Japanese guidance for ventricular assist devices/total artificial hearts. Artif Organs 34:699–702

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nishida, M. (2016). Vascular Engineering of Circulatory Assist Devices. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics