Skip to main content

Vascular Engineering to Make Blood-Compatible Surface

  • Chapter
  • First Online:
Vascular Engineering

Abstract

In spite of tremendous efforts in the last several decades, no artificial grafts have provided a satisfactory patency rate as small-caliber vascular alternatives (less than 5 mm diameter) in clinical applications. Owing to thrombus formation at acute stage and intimal thickening caused by compliance mismatch, the long-term patency of these small-caliber vascular grafts is still disappointing. Endothelial cell seeding has been proposed to improve the blood compatibility of small-diameter vascular grafts by creating an inner lining with similar non-thrombogenic surface characteristics as native blood vessels. To obtain consistent and firm endothelial cell linings to make hybrid vascular grafts, we review special surface modification technique ion beam implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhatnagar G, Fremes SE, Christakis GT, Goldman BS (1998) Early results using an ePTFE membrane for pericardial closure following coronary bypass grafting. J Card Surg 13:190–193

    Article  CAS  PubMed  Google Scholar 

  • Bilek MM, McKenzie DR (2010) Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys Rev 2:55–65

    Article  CAS  Google Scholar 

  • Blakemore AH, Voorhees AB Jr (1954) The use of tubes constructed from Vinyon N cloth in bridging arterial defects; experimental and clinical. Ann Surg 140:324–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan RA, Lee IS, Williams JM (1990) Surface modification of biomaterials through noble metal ion implantation. J Biomed Mater Res 24:309–318

    Article  CAS  PubMed  Google Scholar 

  • Chen CS, Alonso JL, Ostuni E et al (2003) Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307:355–361

    Article  CAS  PubMed  Google Scholar 

  • Cutler SM, Garcia AJ (2003) Engineering cell adhesive surfaces that direct integrin α2β1 binding using a recombinant fragment of fibronectin. Biomaterials 24:1759–1770

    Article  CAS  PubMed  Google Scholar 

  • Elloumi I, Kobayashi R, Funabashi H et al (2006) Construction of epidermal growth factor fusion protein with cell adhesive activity. Biomaterials 27:3451–3458

    Article  CAS  PubMed  Google Scholar 

  • Greisler HP (1990) Interactions at the blood/material interface. Ann Vasc Surg 4:98–103

    Article  CAS  PubMed  Google Scholar 

  • Grinnel F, Feld MK (1981) Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res 15:363–381

    Article  Google Scholar 

  • Herring M, Gardner A, Glover J (1978) A single-staged technique for seeding vascular grafts with autogeneous endothelium. Surgery 84:498–504

    CAS  PubMed  Google Scholar 

  • Herring M, Smith J, Dalsing M et al (1994) Endothelial seeding polytetrafluoroethylene femoral popliteal bypasses: the failure of low-density seeding to improve patency. J Vasc Surg 20:650–655

    Article  CAS  PubMed  Google Scholar 

  • Jang JH, Hwang JH, Chung CP (2004) Production of recombinant human tenascin-C module containing a cell adhesion recognition motif of RGD. Biotechnol Lett 25:1831–1835

    Article  Google Scholar 

  • Johnson WC, Lee KK (2000) A comparative evaluation of polytetrafluoroethylene, umbilical vein, and saphenous vein bypass grafts for femoral-popliteal above-knee revascularization: a prospective randomized Department of Veterans Affairs cooperative study. J Vasc Surg 32:268–277

    Article  CAS  PubMed  Google Scholar 

  • Kaibara M, Iwata H, Wada H et al (1996) Promotion and control of selective adhesion and proliferation of endothelial cells on polymer surface by carbon deposition. J Biomed Mater Res 31:429–435

    Article  CAS  PubMed  Google Scholar 

  • Kannan RY, Salacinski HJ, Butler PE et al (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 74B:570–581

    Article  CAS  Google Scholar 

  • Kent KC, Oshima A, Whittemore AD (1992) Optimal seeding conditions for human endothelial cells. Ann Vasc Surg 6:258–264

    Article  CAS  PubMed  Google Scholar 

  • Kurotobi K (2003) Cell induction technique by ion irradiated collagen for development of a small diameter artificial graft. Trans Mater Res Soc Jpn 28:489–494

    CAS  Google Scholar 

  • Larson CC, Kligman F, Kottke-Marchant K, Marchant RE (2006) The effect of RGD fluorosurfctant polymer modification of ePTFE on endothelial cell adhesion, growth, and function. Biomaterials 27:4846–4855

    Article  Google Scholar 

  • Lee JS, Kaibara M, Iwaki M et al (1993) Selective adhesion and proliferation of cells on ion-implanted polymer domains. Biomaterials 14:958–960

    Article  CAS  PubMed  Google Scholar 

  • Marletta G (1990) Chemical reactions and physical property modifications induced by KeV ion beams in polymers. Nucl Instrum Methods B46:295–305

    Article  CAS  Google Scholar 

  • Massia SP, Hubbell JA (1991) Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. J Biomed Mater Res 25:223–242

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Hasegawa T, Fuse K et al (1973) A new vascular prosthesis for a small caliber artery. Surgery 74:519–523

    CAS  PubMed  Google Scholar 

  • Monaghan RA, Meban S (1991) Expanded polytetrafluoroethylene patch in hernia repair: a review of clinical experience. Can J Surg 34:502–505

    CAS  PubMed  Google Scholar 

  • Setzen G, Gavin E, Williams F (1997) Tissue response to suture materials implanted subcutaneously in a rabbit model. Plast Reconstr Surg 100:1788–1795

    Article  CAS  PubMed  Google Scholar 

  • Soyer T, Lempinen M, Cooper P, Norton L, Eiseman B (1972) A new venous prosthesis. Surgery 72:864–872

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Kusakabe M, Akiba H et al (1991) In vivo evaluation of antithrombogenicity for ion implanted silicone rubber using indium-111-tropolone-platelets. Nucl Instrum Methods B59(60):698–704

    Article  Google Scholar 

  • Suzuki Y, Kusakabe M, Akiba H et al (1992) In vivo evaluation of antithrombogenicity and surface analysis of ion implanted silicone rubber. Radiat Phys Chem 39:553–560

    CAS  Google Scholar 

  • Suzuki Y, Kusakabe M, Kaibara M et al (1994) Cell adhesion control by ion implantation into extracellular matrix. Nucl Instrum Methods B91:588–592

    Google Scholar 

  • Suzuki Y, Iwaki M, Takahashi N et al (2005) In vitro and in-vivo study of He + ion irradiated collagen for development of small diameter stent graft material. Nucl Instrum Methods B 206:538–542

    Article  Google Scholar 

  • Takahara A, Tashita J, Kajiyama T et al (1985) Effect of aggregation state of hard segment in segmented poly(urethaneureas) on their fatigue behavior after interaction with blood components. J Biomed Mater Res 19:13

    Article  CAS  PubMed  Google Scholar 

  • Tseng DY, Edelman ER (1998) Effects of amide and amine plasma-treated ePTFE vascular grafts on endothelial cell lining in an artificial circulatory system. J Biomed Mater Res 42:188–198

    Article  CAS  PubMed  Google Scholar 

  • Walluscheck KP, Steinhoff G, Kelm G et al (1996) Improved endothelial cell attachment on ePTFE vascular grafts pretreated with synthetic RGD-containing peptides. Eur J Vasc Endovasc Surg 12:321–330

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Greisler HP (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37:472–480

    Article  PubMed  Google Scholar 

  • Yamagata S, Goto K, Oda Y et al (1993) Clinical experience with expanded polytetrafluoroethylene sheet used as an artificial dura mater. Neurol Med Chir 33:582–585

    Article  CAS  Google Scholar 

  • Zilla P, Fasol R, Deutsch M et al (1987) Endothelial cell seeding of polutetrafluoroethylene vascular grafts in humans: a preliminary report. J Vasc Surg 6:535–541

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ujiie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ujiie, H., Suzuki, Y., Liepsch, D. (2016). Vascular Engineering to Make Blood-Compatible Surface. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics