Skip to main content

Introduction

  • Chapter
  • First Online:
Vascular Engineering
  • 857 Accesses

Abstract

The vascular system maintains the homeostasis by coordinating various transport phenomena- momentum, mass and the heat transfer- in the circulatory system. To understand the integrated view of dynamic equilibrium state, we need all the conventional macroscopic engineering, cellular and molecular approach. The integrated view of vascular system at multiple scales based on the multi-disciplinary approaches is referred to as vascular engineering. The vascular engineering aims to construct an integrated view, which comprises analysis, synthesis and medical applications. This book focuses on these three aspects of vascular engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B et al (1983) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Ando J, Yamamoto K (2011) Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal 15:1389–1403

    Article  CAS  PubMed  Google Scholar 

  • Aranda-Espinoza H (2015) Mechanobiology of the endothelium. CRC Press, Boca Raton

    Book  Google Scholar 

  • Atala A, Lanza R, Thomson JA, Nerem RM (2008) Principles of regenerative medicine. Elsevier, Amsterdam

    Google Scholar 

  • Berger SA et al (eds) (1996) Introduction to bioengineering. Oxford University Press, New York

    Google Scholar 

  • Caro CG, Pedley TJ, Schroter RC, Seed WA (1978) The mechanics of the circulation. Oxford University Press, Oxford

    Google Scholar 

  • Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387

    Article  PubMed  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • De S, Hwang W, Kuhl E (2015) Multiscale modeling in biomechanics and mechanobiology. Springer, London

    Book  Google Scholar 

  • Engler AJ, Kumar S (2014) Mechanotransduction. Academic, Amsterdam

    Google Scholar 

  • Fournier R (2012) Basic transport phenomena in biomedical engineering, 3rd edn. CRC Press, Baca Raton

    Google Scholar 

  • Frangos JA (ed) (1993) Physical forces and the mammalian cell. Academic, San Diego

    Google Scholar 

  • Friedman MH (2008) Principles and models of biological transport. Springer, New York

    Book  Google Scholar 

  • Fung YC (1990) Biomechanics, motion, flow, stress and growth. Springer, New York

    Google Scholar 

  • Fung YC (1997) Biomechanics: circulation. Springer, New York

    Book  Google Scholar 

  • Fung YC (2010) Biomechanics: mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Gefen A (2011) Cellular and biomolecular mechanics and mechanobiology. Springer, Berlin

    Book  Google Scholar 

  • Geris L (2012) Computational modeling in tissue engineering. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hall JE (2011) Textbook of medical physiology, 12th edn. Elsevier, Philadelphia

    Google Scholar 

  • Jacobs CR, Huang H, Kwon RY (2012) Introduction to cell mechanics and mechanobiology. Garland Science, New York

    Google Scholar 

  • Kierszenbaum AL, Tres L (2012) Histology and cell biology. Elsevier, Philadelphia

    Google Scholar 

  • Kiseleva I, Kamkin A (2010) Mechanosensitivity and mechanotransduction. Springer, Dordrecht

    Google Scholar 

  • Klabunde RE (2012) Cardiovascular physiology concepts. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Lee JKJ (2004) Dynamics of the vascular system. World Scientific Publishing Co. Pte. Ltd, River Edge, Singapore

    Google Scholar 

  • Mofrad MRK, Kamm RD (2009) Cellular mechanotransduction: diverse perspectives from molecules to tissues. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nagatomi J (2011) Mechanobiology handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pedley TJ (1980) Fluid mechanics of large blood vessels. Cambridge University Press, New York

    Book  Google Scholar 

  • Probstein RF (1989) Physicochemical hydrodynamics. Butterworths, Boston

    Google Scholar 

  • Rakocevic G, Djukic T, Filipovic N, Milutinovic V (2013) Computational medicine in data mining and modeling. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tanishita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tanishita, K., Yamamoto, K. (2016). Introduction. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics