Skip to main content

Evaluating Relationships Between Biodiversity and Ecosystem Functions in Forests Using Forest Inventory and Allometry Data

  • Chapter
  • First Online:
Integrative Observations and Assessments

Part of the book series: Ecological Research Monographs ((APBON))

  • 1069 Accesses

Abstract

Biodiversity loss may cause various changes in ecosystem functions of forests. This chapter presents methods and possibilities of evaluating biodiversity–ecosystem function relationships in forest ecosystems using forest inventory and allometry data. Although these data have been collected in plantations and natural forests all over the world, their use in biodiversity–ecosystem function studies is still limited. Inventory and allometry data provide various information such as productivity and carbon stock of forests, growth and demography of individual trees, tree size and mass distribution, horizontal and vertical structure of forests, and tree species composition of the local community and regional species pool. Such information is indispensable to understand the mechanisms of biodiversity effects on ecosystem functions, to predict the consequence of biodiversity loss by improving functional trait approaches toward more mechanistic and predictive paths, and to develop studies of biodiversity–ecosystem function that are relevant to conservation. Two new databases, a forest inventory database and an allometry database, and data papers will promote biodiversity–ecosystem function studies through enhanced data availability, especially in Asia where such studies are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso D, Etienne RS, McKane AJ (2006) The merits of neutral theory. Trends Ecol Evol 21:451–457

    Article  PubMed  Google Scholar 

  • Barantal S, Roy J, Fromin N, Schimann H, Hattenschwiler S (2011) Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest. Oecologia (Berl) 167:241–252

    Article  Google Scholar 

  • Bradford J (2011) Divergence in forest-type response to climate and weather: evidence for regional links between forest-type evenness and net primary productivity. Ecosystems 14:975–986

    Article  Google Scholar 

  • Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310:1029–1031

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C, Cadotte MW, Carroll IT, Weis JJ, Hector A, Loreau M, Michener WK (2009) Effects of biodiversity on the functioning of ecosystems: a summary of 164 experimental manipulations of species richness. Ecology 90:854

    Article  Google Scholar 

  • Cardinale B, Matulich K, Hooper D, Byrnes J, Duffy E, Gamfeldt L, Balvanera P, O’Connor M, Gonzalez A (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    Article  PubMed  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc B 359:409–420

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia (Berl) 145:87–99

    Article  CAS  Google Scholar 

  • Clark DB, Clark DA (2000) Tree growth, mortality, physical condition, and microsite in old-growth lowland tropical rain forest. Ecology 81:294

    Google Scholar 

  • DeClerck FAJ, Barbour MG, Sawyer JO (2006) Species richness and stand stability in conifer forests of the Sierra Nevada. Ecology 87:2787–2799

    Article  PubMed  Google Scholar 

  • Duffy JE, Srivastava DS, McLaren J, Sankaran M, Solan M, Griffin J, Emmerson M, Jones KE (2009) Forecasting decline in ecosystem services under realistic scenarios of extinction. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning, and human wellbeing. Oxford University Press, New York, pp 60–77

    Chapter  Google Scholar 

  • Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature (Lond) 449:218–222

    Article  CAS  Google Scholar 

  • Griffin JN, Ogorman EJ, Emmerson MC, Jenkins SR, Klein AM, Loreau M, Symstad A (2009) Biodiversity and the stability of ecosystem functioning. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning, and human wellbeing. Oxford University Press, New York, pp 78–94

    Chapter  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Ishihara MI, Hiura T (2011) Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest. Agric For Meteorol 151:1016–1022

    Article  Google Scholar 

  • Ishihara MI, Suzuki S, Nakamura M, Enoki T, Fujiwara A, Hiura T, Homma K, Hoshino D, Hoshizaki K, Ida H, Ishida K, Itoh A, Kaneko T, Kubota K, Kuraji K, Kuramoto S, Makita A, Masaki T, Namikawa K, Niiyama K, Noguchi M, Nomiya H, Ohkubo T, Saito S, Sakai T, Sakimoto M, Sakio H, Shibano H, Sugita H, Suzuki M, Takashima A, Tanaka N, Tashiro N, Tokuchi N, Yoshida T, Yoshida Y (2011) Forest stand structure, composition, and dynamics in 34 sites over Japan. Ecol Res 26:1007–1008

    Article  Google Scholar 

  • Ishii H, Tanabe S, Hiura T (2004) Exploring the relationship between canopy structure, stand productivity and biodiversity of natural forest ecosystems: implications for conservation and management of canopy ecosystem functions. For Sci 50:342–355

    Google Scholar 

  • Jabot F (2010) A stochastic dispersal-limited trait-based model of community dynamics. J Theor Biol 262:650–661

    Article  PubMed  Google Scholar 

  • Jabot F, Etienne RS, Chave J (2008) Reconciling neutral community models and environmental filtering: theory and an empirical test. Oikos 117:1308–1320

    Article  Google Scholar 

  • Kanzaki M (2006) Long-term ecological research sites in Japanese forests (in Japanese; title translated by the authors). In: Masaki T, Tanaka H, Shibata M, The Society for the Study of Species Biology (SSSB) (eds) Forest ecology, with long-term perspectives. Bun-ich Sogo Shuppan, Tokyo, pp 361–370

    Google Scholar 

  • Komiyama A, Nakagawa M, Kato S (2011) Common allometric relationships for estimating tree biomass in cool temperate forests of Japan (in Japanese). J Jpn For Soc 93:220–225

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lei XD, Wang WF, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can J For Res 39:1835–1847

    Article  Google Scholar 

  • Leuschner C, Jungkunst HF, Fleck S (2009) Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. Basic Appl Ecol 10:1–9

    Article  Google Scholar 

  • Lichstein JW, Dushoff J, Ogle K, Chen AP, Purves DW, Caspersen JP, Pacala SW (2010) Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors. Ecol Appl 20:684–699

    Article  PubMed  Google Scholar 

  • Matsunaga SN, Chatani S, Nakatsuka S, Kusumoto D, Kubota K, Utsumi Y, Enoki T, Tani A, Hiura T (2012) Determination and potential importance of diterpene (kaur-16-ene) emission from dominant coniferous trees in Japan. Chemosphere 87:886–893

    Article  CAS  PubMed  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Michener W, Brunt J, Helly J, Kirchner T, Stafford S (1997) Nongeospatial metadata for the ecological sciences. Ecol Appl 7:330–342

    Article  Google Scholar 

  • Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219

    Article  PubMed  Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2:75–79

    Article  Google Scholar 

  • Naeem S, Wright J (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579

    Article  Google Scholar 

  • Naeem S, Colwell R, Díaz S, Hughes J, Jouseau C, Lavorel S, Morin P, Petchey O, Wright J (2007) Predicting the ecosystem consequences of biodiversity loss: the biomerge framework. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, New York, pp 113–126

    Chapter  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manag 255:781–786

    Article  Google Scholar 

  • Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manriques G, Harms KE, Licona JC, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Pena-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89:1908–1920

    Article  CAS  PubMed  Google Scholar 

  • Potvin C, Dutilleul P (2009) Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology 90:321–327

    Article  PubMed  Google Scholar 

  • Potvin C, Mancilla L, Buchmann N, Monteza J, Moore T, Murphy M, Oelmann Y, Scherer-Lorenzen M, Turner BL, Wilcke W, Zeugin F, Wolf S (2011) An ecosystem approach to biodiversity effects: carbon pools in a tropical tree plantation. For Ecol Manag 261:1614–1624

    Article  Google Scholar 

  • Ruiz-Jaen MC, Potvin C (2011) Can we predit carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol 189:978–987

    Article  PubMed  Google Scholar 

  • Saatchi S, Harris N, Brown S, Lefsky M, Mitchard E, Salas W, Zutta B, Buermann W, Lewis S, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scherer-Lorenzen M, Potvin C, Koricheva J, Schmid B, Hector A, Bornik Z, Reynolds G, Schulze E-D (2005) The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Springer, New York, pp 347–376

    Chapter  Google Scholar 

  • Scherer-Lorenzen M, Bonilla JL, Potvin C (2007a) Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116:2108–2124

    Article  Google Scholar 

  • Scherer-Lorenzen M, Schulze E-D, Don A, Schumacher J, Weller E (2007b) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol Evol Syst 9:53–70

    Article  Google Scholar 

  • Schmid B, Balvanera P, Cardinale J, Godbold J, Pfisterer B, Raffaelli D, Solan M, Srivastava DS (2009) Consequences of species loss for ecosystem functioning: meta-analyses of data from biodiversity experiments. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning, and human wellbeing. Oxford University Press, New York, pp 14–29

    Chapter  Google Scholar 

  • Srivastava DS, Vellend M (2005) Biodiversity–ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294

    Article  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. Proc Natl Acad Sci USA 108:20627–20632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manag 97:1–24

    Article  Google Scholar 

  • Tollefson J (2011) A new eye on biodiversity. Nature (Lond) 474:13–14

    Article  CAS  Google Scholar 

  • Uriarte M, Condit R, Canham CD, Hubbell SP (2004) A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter? J Ecol 92:348–360

    Article  Google Scholar 

  • Vilà M, Inchausti P, Vayreda J, Barrantes O, Gracia C, Ibáñez JJ, Mata T (2005) Confounding factors in the observed productivity–diversity relationship in forests. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Springer, New York, pp 65–86

    Chapter  Google Scholar 

  • Vilà M, Vayreda J, Comas L, Ibáñez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10:241–250

    Article  PubMed  Google Scholar 

  • Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol Lett 13:267–283

    Article  PubMed  Google Scholar 

  • Whitlock M, McPeek M, Rausher M, Rieseberg L, Moore A (2010) Data archiving. Am Nat 175:145–146

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kaichiro Sasa and Dr. Kentarou Takagi for permission for use of data, Mr. Masahiro Nagano and the late Mr. Masahito Nishioka for the provision of biomass data, Dr. Shin-ichiro Aiba for valuable information, and Mr. Takahiro Inoue and Mr. Hayato Aoyama for data collection. The study was supported by the Environmental Research and Technology Development Fund (S-9-3) of the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masae I. Ishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Ishihara, M.I., Utsugi, H., Tanouchi, H., Hiura, T. (2014). Evaluating Relationships Between Biodiversity and Ecosystem Functions in Forests Using Forest Inventory and Allometry Data. In: Nakano, Si., Yahara, T., Nakashizuka, T. (eds) Integrative Observations and Assessments. Ecological Research Monographs(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-54783-9_19

Download citation

Publish with us

Policies and ethics