Advertisement

Introduction

  • Takanori Sugiyama
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Recent dramatic development of theory and experiment for microscopic systems has made it possible to investigate Nature more deeply and to utilize Her often surprising properties for our own purposes. Tests of quantum entanglement is a good early example.

Keywords

Quantum Tomography Expected Loss Adaptive Design Cryptographic Protocol Quantum Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935). doi:  10.1103/PhysRev.47.777
  2. 2.
    E. Schrödinger, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31 (1935), p. 555. doi: 10.1017/S0305004100013554
  3. 3.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  4. 4.
    N. Gisin, arXiv:070221[quant-ph] (2007)Google Scholar
  5. 5.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981). doi: 10.1103/PhysRevLett.47.460 Google Scholar
  6. 6.
    A. Zeilinger, Rev. Mod. Phys. 71, S288 (1999). doi: 10.1103/RevModPhys.71.S288
  7. 7.
    Y. Hasegawa, R. Loldl, G. Badurek, M. Baron, H. Rauch, Nature 425, 45 (2003). doi: 10.1038/nature01881
  8. 8.
    M.A. Rowe, D. Klelplnskl, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Nature 409, 791 (2001). doi: 10.1038/35057215
  9. 9.
    D.N. Matsukevich, P. Maunz, D.L. Moehring, S. Olmschenk, C. Monroe, Phys. Rev. Lett. 100, 150404 (2008). doi: 10.1103/PhysRevLett.100.150404 Google Scholar
  10. 10.
    M. Ansmann, H. Wang, R.C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, M. Weides, J. Wenner, A.N. Cleland, J.M. Martinis, Nature 461, 504 (2009). doi: 10.1038/nature08363
  11. 11.
    G. Waldherr, P. Neumann, S.F. Huelga, F. Jelezko, J. Wrachtrup, Phys. Rev. Lett. 107, 090401 (2011). doi: 10.1103/PhysRevLett.107.090401 Google Scholar
  12. 12.
    A. Go, J. Mod. Phys. 51, 991 (2004). doi: 10.1080/09500340408233614
  13. 13.
    C.H. Bennett, G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, 1984), p. 175Google Scholar
  14. 14.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991). doi: 10.1103/PhysRevLett.67.661
  15. 15.
    P.W. Shor, J. Preskill, Phys. Rev. Lett. 85, 441 (2000). doi: 10.1103/PhysRevLett.85.441 Google Scholar
  16. 16.
    D. Mayers, J. ACM 48, 351 (2001). doi: 10.1145/382780.382781
  17. 17.
    P.W. Shor, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Press, 1994). doi: 10.1109/SFCS.1994.365700
  18. 18.
    S. Jordan, Quantum algorithm zoo. http://math.nist.gov/quantum/zoo/
  19. 19.
    V. Scarani, H. Bechmann-Pasquinucci, N.J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, Rev. Mod. Phys. 81, 1301 (2009). doi: 10.1103/RevModPhys.81.1301 Google Scholar
  20. 20.
    W.P. Schleich, H. Walther (eds.), Elements of Quantum Information (WILEY-VCH, Weinheim, 2007)Google Scholar
  21. 21.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010). doi: 10.1038/nature08812
  22. 22.
    M. Paris, J. Řeháček (eds.), Quantum State Estimation, Lecture Notes in Physics (Springer, Berlin, 2004)Google Scholar
  23. 23.
    E.L. Lehmann, Theory of Point Estimation, Springer Texts in Statistics (Springer, New York, 1998)Google Scholar
  24. 24.
    M. Hayashi (ed.), Asymptotic Theory of Quantum Statistical Inference: Selected Papers (World Scientific, Singapore, 2005)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Physics Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations