Skip to main content

Humidity-Sensitive Conducting Polymer Actuators

  • Chapter
  • First Online:
Soft Actuators

Abstract

Free-standing films made of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) were prepared by casting water dispersion of its colloidal particles. Specific surface area, water vapor sorption, and electro-active polymer actuating behavior of the resulting films were investigated by means of sorption isotherm, and electromechanical analysis. It was found that the non-porous PEDOT/PSS film, having a specific surface area of 0.13 m2/g, sorbed water vapor of 1,080 cm3(STP)/g, corresponding to 87 wt%, at relative water vapor pressure of 0.95. Upon application of 10 V, the film underwent contraction of 2.4 % in air at 50 % relative humidity (RH) which significantly increased to 4.5 % at 90 % RH. The principle lay in desorption of water vapor sorbed in the film due to Joule heating, where electric field was capable of controlling the equilibrium of water vapor sorption. The film generated contractile stress as high as 17 MPa under isometric conditions and work capacity attained 174 kJ/m3, where Young’s modulus of the film increased from 1.8 to 2.6 GPa by application of 6 V at 50 % RH. On the basis of this phenomenon, linear actuators utilizing PEDOT/PSS films were successfully developed and applied to leverage actuator and Braille cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-sized structures. Science 268:1735–1738

    Article  CAS  Google Scholar 

  2. Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta EJ, Becht C (1991) Micro electromechanical actuators based on conducting polymers. In: Lazarev PI (ed) Molecular electronics. Kluwer Academic, The Netherlands, pp 267–289

    Chapter  Google Scholar 

  3. Otero TF, Rodríguez J (1993) Electrochemomechanical and electrochemopositioning devices: artificial muscles. In: Aldissi M (ed) Intrinsically conducting polymers: an emerging technology. Kluwer Academic, The Netherlands, pp 179–190

    Chapter  Google Scholar 

  4. Pei Q, Inganäs O (1993) Conjugated polymers as smart materials, gas sensors and actuators using bending beams. Synth Met 55–57:3730–3735

    Article  Google Scholar 

  5. Sansinena JM, Olazábal V, Otero TF, Polo da Fonseca CN, De Paoli M-A (1997) A solid state artificial muscle based on polypyrrole and a solid polymeric electrolyte working in air. Chem Commun 2217–2218

    Google Scholar 

  6. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurikiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquid for π-conjugated polymer electrochemical devices. Science 297:983–987

    Article  CAS  Google Scholar 

  7. Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407

    Article  CAS  Google Scholar 

  8. Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its applications to a chemomechanical rotor. J Polym Sci Polym Phys 34:1747–1749

    Article  CAS  Google Scholar 

  9. Okuzaki H, Kuwabara T, Kunugi T (1997) A polypyrrole rotor driven by sorption of water vapour. Polymer 38:5491–5492

    Article  CAS  Google Scholar 

  10. Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole films in ambient air. J Polym Sci Polym Phys 36:1591–1594

    Article  CAS  Google Scholar 

  11. Okuzaki H, Funasaka K (2000) Electromechanical properties of a humido-sensitive conducting polymer film. Macromolecules 33:8307–8311

    Article  CAS  Google Scholar 

  12. Okuzaki H, Suzuki H, Ito T (2009) Electrochemical properties of poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) films. J Phys Chem B 113:11378–11383

    Article  CAS  Google Scholar 

  13. Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sens Actuators A 157:96–99

    Article  CAS  Google Scholar 

  14. Okuzaki H, Hosaka K, Suzuki H, Ito T (2013) Humido-sensitive conducting polymer films and applications to linera actuators. React Funct Polym 73:986–992

    Article  CAS  Google Scholar 

  15. Okuzaki H, Suzuki H, Ito T (2009) Electrically driven PEDOT/PSS actuators. Synth Met 159:2233–2236

    Article  CAS  Google Scholar 

  16. Takano T, Masunaga H, Fujiwara A, Okuzaki H, Sasaki T (2012) PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 45:3859–3865

    Article  CAS  Google Scholar 

  17. Hohnholz D, Okuzaki H, MacDiarmid AG (2005) Plastic electronic devices through line patterning of conducting polymers. Adv Funct Mater 15:51–56

    Article  CAS  Google Scholar 

  18. Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24:261–264

    Article  CAS  Google Scholar 

  19. Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256–261

    Article  CAS  Google Scholar 

  20. Brunauer S, Emmett PH, Teller E (1938) Adsoption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  21. Dutta D, Chatterjee S, Pillai KT, Pujari PK, Ganguly BN (2005) Pore structure of silica gel: a comparative study through BET and PALS. Chem Phys 312:319–324

    Article  CAS  Google Scholar 

  22. Ertl G, Knözinger H, Weitkamp J (eds) (1999) Preparation of solid catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  23. Yan H, Arima S, Mori Y, Kagata T, Sato H, Okuzaki H (2009) Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate): correlation between colloidal particles and thin films. Thin Solid Films 517:3299–3303

    Article  CAS  Google Scholar 

  24. Okuzaki H, Kondo T, Kunugi T (1999) Characteristics of water in polypyrrole films. Polymer 40:995–1000

    Article  CAS  Google Scholar 

  25. Ross S, Oliver JP (eds) (1964) On physical adsorption. Interscience, New York

    Google Scholar 

  26. Barrow GM (ed) (1961) Physical chemistry. McGraw-Hill, New York

    Google Scholar 

  27. Okuzaki H, Funasaka K (2000) Electro-responsive polypyrrole film based on reversible sorption of water vapor. Synth Met 108:127–131

    Article  CAS  Google Scholar 

  28. Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640

    Article  CAS  Google Scholar 

  29. Alexander RM (1992) Exploring biomechanics. Freeman WH Company, New York

    Google Scholar 

  30. Santa AD, De Rossi D, Mazzoldi A (1997) Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth Met 90:93–100

    Article  Google Scholar 

  31. Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728

    Article  Google Scholar 

  32. Okuzaki H, Kuwabara T, Kondo T (1998) Role and effect of dopant on sorption-induced motion of polypyrrole films. J Polym Sci Polym Phys 36:2635–2642

    Article  CAS  Google Scholar 

  33. Nemat-Nasser S, Wu Y (2003) Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. J Appl Phys 93:5255–5267

    Article  CAS  Google Scholar 

  34. Bergamasco M, Salsedo F, Dario P (1989) Shape memory alloy micromotors for direct-drive actuation of dexterous artificial hands. Sens Actuators 17:115–119

    Article  Google Scholar 

  35. Thomsen DL III, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:5868–5875

    Article  CAS  Google Scholar 

  36. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839

    Article  CAS  Google Scholar 

  37. Lee JK, Marcus MA (1981) The deflection-bandwidth product of poly(vinylidene fluoride) benders and related structures. Ferroelectrics 32:93–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Okuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Okuzaki, H. (2014). Humidity-Sensitive Conducting Polymer Actuators. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_8

Download citation

Publish with us

Policies and ethics