Skip to main content

Conducting Polymers

  • Chapter
  • First Online:

Abstract

Soft actuators based on conducting polymers are discussed in terms of strain, stress and stability taking the mechanism into consideration. The actuation is generated by the insertion of anions from the electrolyte solution, which is triggered by electrochemical redox reactions. Characteristics of the actuation in polypyrrole, polyaniline, polythiophene, and poly(3,4-ethylenedioxythiophene) (PEDOT) are described. The maximum strain and stress are reported to be 39.9 % and 22 MPa, respectively, in polypyrrole actuator. However, the strain is usually less than 10 %. The stress (contraction force) originates from the elasticity of conducting polymers or Young’s modulus. Creeping under tensile loads, which is intimate issue in soft actuators, is discussed in terms of conformation change of polymer chains and shape memory effect. The actuation generated by sorption and desorption of moisture controlled with electrical heating is also introduced with the mechanism and characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10:30–38. doi:10.1016/S1369-7021(07)70048-2

    Article  CAS  Google Scholar 

  2. Asaka K, Oguro K, Nishimura Y, Mizutani M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli. 1. Response characteristics to various wave-forms. Polym J 27:436–440. doi:10.1295/polymj.27.436

    Article  CAS  Google Scholar 

  3. Hara S, Zama T, Takashima W, Kaneto K (2005) Free-standing gel-like polypyrrole actuators doped with bis(perfluoroalkylsulfonyl)imide exhibiting extremely large strain. Smart Mater Struct 14:1501–1510. doi:10.1088/0964-1726/14/6/042

    Article  CAS  Google Scholar 

  4. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839. doi:10.1126/science.287.5454.836

    Article  CAS  Google Scholar 

  5. Hirai T, Sadatoh H, Ueda T, Kasazaki T, Kurita Y, Hirai M, Hayashi S (1996) Polyurethane elastomer actuator. Angew Makrom Chemie 240:211–229. doi:10.1002/apmc.1996.052400121

    Google Scholar 

  6. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244. doi:10.1038/355242a0

    Article  CAS  Google Scholar 

  7. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid bucky gel. Angew Chem Int Ed 44:2410–2413. doi:10.1002/anie.200462318

    Article  CAS  Google Scholar 

  8. Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353. doi:10.1016/0379-6779(96)80158-5

    Article  CAS  Google Scholar 

  9. Kaneto K, Min Y-G, MacDiarmid AG (1994) Conductive polyaniline laminates. U.S-Patent 5,556,700

    Google Scholar 

  10. Otero TF, Sansinena JM (1995) Artificial muscles based on conducting polymers. Bioelectrochem Bioenerg 38:411–414. doi:10.1016/0302-4598(95)01802-L

    Article  CAS  Google Scholar 

  11. Hara S, Zama T, Takashima W, Kaneto K (2005) Free-standing polypyrrole actuators with response rate of 10.8 % s(−1). Synth Met 149(2–3):199–201. doi:10.1016/j.synthmet.2005.01.003

    Article  CAS  Google Scholar 

  12. Bredas JL, Wudl F, Heeger AJ (1987) Polarons and bipolarons in doped polythiophene: a theoretical investigation. Solid State Commun 63:577–580. doi:10.1016/0038-1098(87)90856-8

    Article  CAS  Google Scholar 

  13. Sendai T, Suematsu H, Kaneto K (2009) Anisotropic strain and memory effect in electrochemomechanical strain of polypyrrole films under high tensile stresses. Jpn J Appl Phys 48:051506. doi:10.1143/JJAP.48.051506 (4 pages)

    Article  Google Scholar 

  14. Kaneto K, Hashimoto H, Tominaga K, Takashima W (2011) Shape retention in polyaniline artificial muscles. Jpn J Appl Phys 50:021603. doi:10.1143/JJAP.50.021603 (5 pages)

    Article  Google Scholar 

  15. Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its application to a chemomechanical rotor. J Polym Sci B Polym Phys 34:1735–1749. doi:10.1002/(SICI)1099-0488(19960730)34:10<1747::AID-POLB5>3.0.CO;2-N

    Google Scholar 

  16. Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci B Polym Phys 36:1591–1594. doi:10.1002/(SICI)1099-0488(19980715)36:9<1591::AID-POLB16>3.3.CO;2-W

    Google Scholar 

  17. Okuzaki H, Suzuki H, Ito T (2009) Electrically driven PEDOT/PSS actuators. Synth Metal 159:2233–2236. doi:10.1016/j.synthmet.2009.07.054

    Article  CAS  Google Scholar 

  18. Tominaga K, Hashimoto H, Takashima W, Kaneto K (2011) Training and shape retention in conducting polymer artificial muscles. Smart Mater Struct 20:124005. doi:10.1088/0964- 1726/20/12/124005 (6 pages)

    Article  Google Scholar 

  19. Spinks GM, Truong VT (2005) Work-per-cycle analysis for electromechanical actuators. Sens Actuators A 119:455–461. doi:10.1016/j.sna.2004.10.010

    Article  CAS  Google Scholar 

  20. Kaneto K, Fujisue H, Kunifusa M, Takashima W (2007) Conducting polymer soft actuators based on polypyrrole films-energy conversion efficiency. Smart Mater Struct 16:S250–S255. doi:10.1088/0964-1726/16/2/S08

    Article  CAS  Google Scholar 

  21. Hara S, Zama T, Takashima W, Kaneto K (2004) TFSI-doped polypyrrole actuator with 26 % strain. J Mater Chem 14:1516–1517. doi:10.1039/b404232h

    Article  CAS  Google Scholar 

  22. Hara S, Zama T, Takashima W, Kaneto K (2004) Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J 36:151–161. doi:10.1295/polymj.36.151

    Article  CAS  Google Scholar 

  23. Fujisue H, Sendai T, Yamato K, Takashima W, Kaneto K (2007) Work behaviors of soft actuators based on cation driven polypyrrole. Bioinsp Biomim 2:S1–S5. doi:10.1088/1748-3182/2/2/S01

    Article  CAS  Google Scholar 

  24. Madden JD, Ringerknecht D, Anquetil PA, Hunter IW (2007) Creep and cycle life in polypyrrole actuators. Sens Actuators A 133:210–217. doi:10.1016/j.sna.2006.03.016

    Article  CAS  Google Scholar 

  25. Smela E, Gadegaard N (2001) Volume change in polypyrrole studied by atomic force microscopy. J Phys Chem B 105:9395–9406. doi:10.1021/jp004126u

    Article  CAS  Google Scholar 

  26. Foroughi J, Spinks GM, Wallace GG (2011) High strain electromechanical actuators based on electrodeposited polypyrrole doped with di-(2ethylhexyl)sulfosuccinate. Sens Actuators B 155:278–284. doi:10.1016/j.snb.2010.12.035

    Article  CAS  Google Scholar 

  27. Yamato K, Tominaga K, Takashima W, Kaneto K (2009) Stability of electrochemomechanical strains in polypyrrole films using ionic liquids. Synth Met 159:839–842. doi:10.1016/j.synthmet.2009.01.016

    Article  CAS  Google Scholar 

  28. Ding J, Zhou D, Spinks G, Wallace GG, Forsyth S, Forsyth M, MacFarlane D (2003) Use of ioni liquid as electrolytes in electromechanical actuator systems based on inherently conducting polymrs. Chem Mater 15:2392–2398. doi:10.1021/cm020918k

    Article  CAS  Google Scholar 

  29. Takashima W, Nakashima M, Pandey SS, Kaneto K (2004) Enhanced electrochemomechanical activity of polyaniline films towards high pH region: contribution of Donnan effect. Electrochim Acta 49:4239–4244. doi:10.1016/jelectacta.2004.04.020

    Article  CAS  Google Scholar 

  30. Smela E, Lu W, Mattes BR (2005) Polyaniline actuators:Part1 PANi(AMPS) in HCl. Synth Metal 151:26–42. doi:10.1016/j.synthmet.2005.03.009

    Article  Google Scholar 

  31. Lu W, Mattes BR (2005) Factors influencing electrochemical actuation of polyaniline fibrs in ionic liquids. Synth Met 152:53–56. doi:10.1016/j.synthmet.2005.07.122

    Article  CAS  Google Scholar 

  32. Fuchiwaki M, Takashima W, Kaneto K (2002) Soft actuators based on poly(3-alkylthiophene) films upon electrochemical oxidation and reduction. Mol Cryst Liq Cryst 374:513–520. doi:10.1080/10587250210420

    Article  CAS  Google Scholar 

  33. Xi BB, Troung VT, Whitten P, Ding J, Spinks GM, Wallace GG (2006) Poly(3-methylthiophene) electrochemical actuators showing increased sprain and work per cycle at higher operating stresses. Polymer 47:7720–7725. doi:10.1016/j.polymer.2006.08.063

    Article  CAS  Google Scholar 

  34. Vandesteeg N, Madden PG, Madden JD, Anquetil PA, Hunter IW (2003) Synthesis and characterization of EDOT-based conducting polymer actuators. Smart Struct Mater EAPAD 5051:349–356. doi:10.1117/12.484418

  35. Kiefer R, Bowmaker GA, Cooney RP, Kilmartin PA, Sejdic JT (2008) Cation driven actuation for free standing PEDOT film prepared from propylene carbonate electrolytes containing TBACF3SO3. Electrochim Acta 53:2593–2599. doi:10.1016/j.electacta.2007.10.033

    Article  CAS  Google Scholar 

  36. Kaneto K, Takayanagi K, Tominaga K, Takashima W (2012) How to improve electrochemomechanical strain in conucting polymers. In: Proceedings of SPIE electroactive polymer actuators and devices (EAPAD), vol 8340, pp 83400K-1 ~ 7. doi:10.1117/12.917879

  37. Plesse C, Khaldhi A, Wang Q, Cattan E, Eyssie D, Chevrot C, Vidal F (2011) Polyethylene oxide-poltetrahydrofurane-PEDOT conducting interpenetrating polymer networks for high speed actuators. Smart Mater Struct 20:124002. doi:10.1088/0964-1726/20/12/124002 (8 pages)

    Article  Google Scholar 

  38. Cho MS, Seo HJ, Nam JD, Choi HR, Koo JC, Song KG, Lee Y (2006) A solid state actuator based on the PEDOT/NBR system. Sens Actuators B 119:621–624. doi:10.1016/j.snb.2006.01.021

    Article  CAS  Google Scholar 

  39. Hara S, Zama T, Takashima W, Kaneto K (2005) Gel-like polypyrrole based artificial muscles with extremely large strain. Polym J 36:933–936. doi:10.1295/polymj.36.933

    Article  Google Scholar 

  40. Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) Artificial muscle: electromechanical actuators using polyaniline films. Synth Metal 71:2211–2212. doi:10.1016/0379-6779(94)03226-V

    Article  CAS  Google Scholar 

  41. Fuchiwaki M, Takashima W, Kaneto K (2001) Comparative study of electrochemomechanical deformation of poly(3-alkylthiophene)s, polyaniline and polypyrrole films. Jpn J Appl Phys 40:7110–7116. doi:10.1143/JJAP.40.7110

    Article  CAS  Google Scholar 

  42. Kaneto K, Shinonome T, Tominaga K, Takashima W (2011) Electrochemical creeping and actuation of polypyrrole in ionic liquid. Jpn J Appl Phys 50:091601. doi:10.1143/JJAP.50.091601 (5 pages)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Kaneto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kaneto, K. (2014). Conducting Polymers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_7

Download citation

Publish with us

Policies and ethics