Skip to main content

Thermo-Responsive Nanofiber Mats Fabricated by Electrospinning

  • Chapter
  • First Online:
Soft Actuators
  • 2747 Accesses

Abstract

Copolymers of N-isopropylacrylamide and stearyl acrylate (PNIPA-SAX) with various SA feed ratios (X = 1–10 mol%) were synthesized and electrospun into nanofiber mats. It was found that average diameter of nanofibers electrospun at concentration of 25 % and voltage of 30 kV linearly increased from 165 nm (PNIPA) to 497 nm (PNIPA-SA10) with increasing the SA content. The PNIPA-SAX (X = 3–10 mol%) nanofiber mats were insoluble in water at 25 °C, in which inter-polymer and inter-fiber physical cross-links were formed through hydrophobic interaction of stearyl side-chains. With increasing the temperature from 25 to 40 °C the PNIPA-SA3 nanofiber mat exhibited significant volume contraction of 66 %, while that of a single nanofiber estimated by AFM measurements was found to be 37 %. The results allowed us to conclude that not only swelling-deswelling but also dissociation-association of the nanofibers via hydrophobic interactions were crucially important for the macroscopic volume changes of the nanofiber mats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455

    Article  CAS  Google Scholar 

  2. Kumoda M, Takeoka Y, Watanabe M (2003) Template synthesis of poly(N-isopropylacrylamide) minigels using interconnecting macroporous polystyrene. Langmuir 19:525–528

    Article  CAS  Google Scholar 

  3. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242

    Article  CAS  Google Scholar 

  4. Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Pulsatile drug delivery systems using hydrogels. Adv Drug Delivery Rev 11:85–108

    Article  CAS  Google Scholar 

  5. Yamato N, Akiyama Y, Kobayashi J, Yang J, Kikuchi A, Okano T (2007) Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog Polym Sci 32:1123–1133

    Article  CAS  Google Scholar 

  6. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218

    Article  CAS  Google Scholar 

  7. Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458

    Article  CAS  Google Scholar 

  8. Wang J, Gan D, Lyon LA, El-Sayed MA (2001) Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. J Am Chem Soc 123:11284–11289

    Article  CAS  Google Scholar 

  9. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  10. MacDiarmid AG, Jones WE Jr, Norris ID, Gao J, Johnson AT Jr, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Electrically-generated nanofibers of electronic polymers. Synth Met 119:27–30

    Article  CAS  Google Scholar 

  11. Okuzaki H, Takahashi T, Miyajima N, Suzuki Y, Kuwabara T (2006) Spontaneous formation of poly(p-phenylenevinylene) nanofiber yarns through electrospinning of a precursor. Macromolecules 39:4276–4278

    Article  CAS  Google Scholar 

  12. Okuzaki H, Takahashi T, Hara Y, Yan H (2008) Uniaxially aligned carbon nanofibers derived from electrospun precursor yarns. J Polym Sci Polym Phys 46:305–310

    Article  CAS  Google Scholar 

  13. Okuzaki H, Kobayashi K, Yan H (2009) Non-woven fabric of poly(N-isopropylacrylamide) nanofibers fabricated by electrospinning. Synth Met 159:2273–2276

    Article  CAS  Google Scholar 

  14. Rockwood DN, Chase DB, Akins RE Jr, Rabolt JF (2008) Characterization of electrospun poly(N-isopropyl acrylamide) fibers. Polymer 49:4025–4032

    Article  CAS  Google Scholar 

  15. Ding B, Kim H-Y, Lee S-C, Shao C-L, Lee D-R, Park S-J, Kwang G-B, Choi K-J (2002) Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci Polym Phys 40:1261–1268

    Article  CAS  Google Scholar 

  16. Kim SH, Kim S-H, Nair S, Moore E (2005) Reactive electrospinning of cross-linked poly(2-hydroxyethylmethacrylate) nanofibers and elastic properties of individual hydrogel nanofibers in aqueous solutions. Macromolecules 38:3719–3723

    Article  CAS  Google Scholar 

  17. Okuzaki H, Kobayashi K, Yan H (2009) Thermo-responsive nanofiber mats. Macromolecules 42:5916–5918

    Article  CAS  Google Scholar 

  18. Ringsdorf H, Venzmer J, Winnik FM (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamide). Macromolecules 24:1678–1686

    Article  CAS  Google Scholar 

  19. Matsuda A, Sato J, Yasunaga H, Osada Y (1994) Order–disorder transition of a hydrogel containing an n-alkyl acrylate. Macromolecules 27:7695–7698

    Article  CAS  Google Scholar 

  20. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solution of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  21. Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45:7597–7603

    Article  CAS  Google Scholar 

  22. Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376:219

    Article  CAS  Google Scholar 

  23. Okeyoshi K, Abe T, Noguchi Y, Furukawa H, Yoshida R (2008) Shrinking behavior of surfactant-grafted thermosensitive gels and the mechanism of rapid shrinking. Macomol Rapid Commun 29:897–903

    Article  CAS  Google Scholar 

  24. Norisuye T, Kida Y, Masui N, Tran-Cong-Miyata Q, Maekawa Y, Yoshida M, Shibayama M (2003) Studies on two types of built-in inhomogeneities for polymer gels: frozen segmental concentration fluctuations and spatial distribution of cross-links. Macromolecules 36:6202–6212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Okuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Okuzaki, H. (2014). Thermo-Responsive Nanofiber Mats Fabricated by Electrospinning. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_4

Download citation

Publish with us

Policies and ethics