Skip to main content

Elastomer Transducers

  • Chapter
  • First Online:
Soft Actuators

Abstract

Dielectric elastomers, transducers that couple the deformation of a rubbery polymer film to an applied electric field, show particular promise with features such as simple fabrication in a variety of size scales, high strain and energy density, high efficiency and fast speed of response, and inherent flexibility, environmental tolerance, and ruggedness. A variety of actuator configurations has been demonstrated at various size scales including rolled “artificial muscle” actuators, framed and bending beam actuators for efficient opto-mechanical switches, and diaphragm and thickness mode actuators for pumps and valves. The performance benefits of dielectric elastomers can allow for new generations of devices in microrobotics, communications, and biotechnology.

Dielectric elastomer has also been shown to operate in reverse as a generator. It has several characteristics make it potentially well suited for power takeoff systems using wave, water current, wind, human motion, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiba S, Stanford S, Pelrine R, Kornbluh R, Prahlad H (2006) Electroactive polymer artificial muscle. JRSJ 24(4):38–42

    Article  Google Scholar 

  2. Chiba S, Waki M, Kormbluh R, Pelrine R (2008) Innovative power generators for energy harvesting using electroactive polymer artificial muscles. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices (EAPAD), Proceedings of the SPIE, vol 6927, 692715, pp 1–9

    Google Scholar 

  3. Pelrine R, Chiba S (1992) Review of artificial muscle approaches. In: Proceedings of the third international symposium on micromachine and human science, Nagoya, Japan

    Google Scholar 

  4. Pei Q, Rosenthal M, Pelrine R, Stanford R, Kornbluh R (2003) Multifunctional electroekastomer roll actuators and their application for biomimetic walking robots. In: Bar-Cohen Y (ed) Proceedings of the SPIE, smart structures and materials, electroactive polymer actuators and devices (EAPAD), San Diego, CA, March 2003

    Google Scholar 

  5. Chiba S, Waki M (2011) Extending application of dielectric elastomer artificial muscles to wireless communication systems. Recent advances in wireless communications and networks, Chapter 20, pp 435–454 (InTech)

    Google Scholar 

  6. Chiba S, Waki M, Wada T (2012) Evolving dielectric elastomer artificial muscles. Petrotech, vol 35, No 7

    Google Scholar 

  7. Chiba S et al (2007) Extending applications of dielectric elastomer artificial muscle. In: Proceedings of the SPIE, San Diego, 18–22 March, 2007

    Google Scholar 

  8. Sugimoto T, Ono K, Ando A, Chiba S, Wak M (2010) Sound generator structure for low-elastic electroactive polymer. Acoust Soc Jpn Acoust Sci Tech 31(6):411–413

    Google Scholar 

  9. Chiba S, Waki M, Asaka K, Suwa Y, Wada T, Hirakawa Y (2012) Challenges for Loud speakers using dielectric elastomers. (Invited), Abstract of IUMRS-ICEM 2012 C5—K125-002), C-5: electroactive polymer actuators, sensors and energy harvestors, 25–27 Sept 2012, Yokokama, Japan

    Google Scholar 

  10. Kornbluh R, Bashkin J, Pelrine R, Prahlad H, Chiba S (2004) Medical applications of new electroactive polymer artificial muscles. Seikei Kakou 16(10):631–637

    CAS  Google Scholar 

  11. Pelrine R, Kornbluh R, Prahlad H, Heydt R, Bashkin J, Chiba S (2006) Micro and nano fluidic devices using electroactive polymer artificial muscle. In: Proceedings of the 10th international conference on miniaturized system for chemistry and life science, 5–9 Nov 2006, Tokyo, Japan, pp 278–280

    Google Scholar 

  12. Kornbluh R, Pelrine R, Chiba S (2004) Silicon to silicon: stretching the capabilities of micromachines with electroactive polymers. IEEJ Trans SM 124(8):266–271

    Article  Google Scholar 

  13. Kornbluh R, Pelrine R, Chiba S (2004) Artificial muscle for small robots and other micromechanical devices. IEE Trans Jpn 122-E(2):97–102

    Google Scholar 

  14. Chiba S, Waki M (2011) Current status and future prospects of dielectric elastomer transducers. (Invited), Advanced Technology forum (Front line of Actuator Technology), Japan Society of Mechanical Engineers 2011, Tokyo, Japan

    Google Scholar 

  15. Chiba S, Waki M (2011) Power generation by micro/small vibration using dielectric elastomer. Funct Mater 31(4):56–63

    CAS  Google Scholar 

  16. Chiba S, Pelrine R, Kornbluh R, Prahlad H, Stanford S, Eckerle J (2007) New opportunities in electric power generation using electroactive polymers (EPAM). J Jpn Insti Energ 86(9):743–737

    Article  CAS  Google Scholar 

  17. Chiba S, Kornbluh R, Pelrine R, Waki M (2008) Low-cost hydrogen production from electroactive polymer artificial muscle wave power generators. In: Proceedings of the world hydrogen energy conference 2008, Brisbane Australia, 16–20 June 2008

    Google Scholar 

  18. Chiba S, Waki M, Masuda K, Ikoma T, Osawa H (2011) Innovative wave power generation using dielectric elastomer artificial muscles. In: Proceedings of the WHTC 2011, Glasgow UK

    Google Scholar 

  19. Chiba S, Waki M, Kornbluh R, Pelrine R (2009) Innovative wave power generation system using EPAM. In: Proceedings of the Oceans’ 09, Bremen, Germany, 11–15 May 2009

    Google Scholar 

  20. Harsha P, Kornbluh R, Pelrine R, Stanford S, Eckerle J, Oh S (2005) Polymer power: dielectric elastomers and their applications in distributed actuation and power generation. In: Proceedings of the ISSS 2005, international conference on smart materials structures and systems, Bangalore, India

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiki Chiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Waki, M., Chiba, S. (2014). Elastomer Transducers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_32

Download citation

Publish with us

Policies and ethics