Skip to main content

Micro Pump Driven by a Pair of Conducting Polymer Soft Actuators

  • Chapter
  • First Online:
Soft Actuators
  • 2726 Accesses

Abstract

Micro pumps are regarded as key components of many MEMS devices. They are widely used in the fluid operations systems of fields ranging from chemistry and biotechnology to mechanical engineering. The micro pumps developed to present generally incorporate piezoelectric-element, thermopneumatic, electrostatic, electromagnetic, electroosmotic, electromagnetic-fluid, and various other drives, but along with their reduced size they have increased in component number and structural complexity. The conducting polymer soft actuator based on polypyrrole opens widely and closes completely as a result of electrochemical oxidation and reduction, respectively. The opening and closing movement of the soft actuator, inside which the cation-driven layer is arranged, becomes large because the anion-driven layer that is arranged outside is the predominant driver. We developed a micro pump that is driven by a pair of conducting polymer soft actuator based on polypyrrole and clarified the fundamental characteristics and transport mechanism of the micro pump. The proposed micro pump can transport fluids unidirectionally without backflow by means of a pair of conducting polymer soft actuators that open and close. Furthermore, a wider range of flow rates and a greater maximum delivery head was obtained with the proposed micro pump. The energy consumption rate of the proposed micro pump is dramatically lower than the energy consumption rates of conventional micro pumps because the conducting polymer soft actuator can be driven with a low voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teymoori MM, Ebrahim AS (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A 117:222–229

    Article  CAS  Google Scholar 

  2. Jeong OC, Konishi S (2007) Fabrication and drive test of pneumatic PDMS micro pump. Sens Actuators A 135:849–856

    Article  CAS  Google Scholar 

  3. Nguyen N, Huang X, Chuan TK (2002) MEMS-micropumps: a review. ASME J Fluids Eng 124:385–392

    Article  Google Scholar 

  4. Lee CJ, Tu KZ, Lei U, Hsu CJ, Sheen HJ (2005) A valveless micropump with asymmetric Obstacles. In: Proceedings of the 16th international symposium on transport phenomena, Prague, 2005

    Google Scholar 

  5. Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) Synthesis of highly conducting films of derivatives of polyacetylene. J Am Chem Soc 100:1013–1021

    Article  CAS  Google Scholar 

  6. Nigrey PJ, MacDiarmid AG, Heeger AJ (1979) Electrochemistry of polyacetylene, (CH)x: electrochemical doping of (CH)x films to the metallic state. J Am Chem Soc Chem Commun 594–595

    Google Scholar 

  7. Otero TF, Broschart M (2006) Polypyrrole artificial muscles: a new rhombic element. Construction and electrochemomechanical characterization. J Appl Electrochem 36:205–214

    Article  CAS  Google Scholar 

  8. Otero TF, Martínez JG (2012) Artificial muscles: a tool to quantify exchanged solvent during biomimetic reactions. Chem Mater 24:4093–4099

    Article  CAS  Google Scholar 

  9. Otero TF, Martínez JG, Zaifoglu B (2013) Using reactive artificial muscles to determine water exchange during reactions. Smart Mater Struct 22:104019

    Article  Google Scholar 

  10. Otero TF, Alfaro M, Martinez V, Perez MA, Martinez JG (2013) Biomimetic structural electrochemistry from conducting polymers: processes, charges, and energies. Coulovoltammetric results from films on metals revisited. Adv Funct Mater 23:3929–3940

    Article  CAS  Google Scholar 

  11. Baughman RH (1991) Conducting polymers in redox devices and intelligent materials systems. Makromol Chem Macromol Symp 51:193–215

    Article  CAS  Google Scholar 

  12. Otero TF, Rodriguez J, Angulo E, Santamaria C (1993) Artificial muscles from bilayer structures. Synth Met 57:3713–3723

    Article  CAS  Google Scholar 

  13. Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212

    Article  CAS  Google Scholar 

  14. Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353

    Article  CAS  Google Scholar 

  15. Otero TF, Sansihena JM (1997) Bilayer dimensions and movement in artificial muscles. Bioelectrnchem Bioenerg 42:117–122

    Article  CAS  Google Scholar 

  16. Lewis TW, Moulton SE, Spinks GM, Wallace GG (1997) Optimisation of a polypyrrole based actuator. Synth Met 85:1419–1420

    Article  CAS  Google Scholar 

  17. Careema MA, Vidanapathirana KP, Skaarup S, West K (2004) Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ion 175:725–728

    Article  Google Scholar 

  18. Smela E, Lu W, Mattes BR (2005) Polyaniline actuators: Part 1. PANI(AMPS) in HCl. Synth Met 151:25–42

    Article  CAS  Google Scholar 

  19. Spinks GM, Truong VT (2005) Work-per-cycle analysis for electromechanical actuators. Sensor Actuators A 119:455–461

    Article  CAS  Google Scholar 

  20. Madden JD, Cush RA, Kanigan TS, Brenan CJ, Hunter IW (1999) Encapsulated polypyrrole actuators. Synth Met 105:61–64

    Article  CAS  Google Scholar 

  21. Hutchison S, Lewis TW, Moulton SE, Spinks GM, Wallace GG (2000) Development of polypyrrole-based electromechanical actuators. Synth Met 113:121–127

    Article  CAS  Google Scholar 

  22. Fuchiwaki M, Takashima W, Kaneto K (2001) Comparative study of electrochemomechanical deformations of poly(3-alkylthiophene)s, polyanilines and polypyrrole films. Jpn J Appl Phys 40:7110–7116

    Article  CAS  Google Scholar 

  23. Bay L, West K, Skaarup S (2002) Pentanol as co-surfactant in polypyrrole actuators. Polymer 43:3527–3532

    Article  CAS  Google Scholar 

  24. Otero TF (2013) Reactions drive conformations. Biomimetic properties and devices, theoretical description. J Mater Chem B 1:3754–3767

    Article  CAS  Google Scholar 

  25. Otero TF, Martinez JG (2013) Structural and biomimetic chemical kinetics: kinetic magnitudes include structural information. Adv Funct Mater 23:404–416

    Article  CAS  Google Scholar 

  26. Kaneto K, Sonoda Y, Takashima W (2000) Direct measurement and mechanism of electro-chemomechanical expansion and contraction in polypyrrole films. Jpn J Appl Phys 39:5918–5926

    Article  CAS  Google Scholar 

  27. Ramirez GS, Diamond D (2006) Biomimetic, low power pumps based on soft actuators. Sens Actuators A 135:229–235

    Article  Google Scholar 

  28. Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) TITAN: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511–1516

    Article  CAS  Google Scholar 

  29. Fuchiwaki M, Tanaka K, Kaneto K (2009) Planate conducting polymer actuator based on polypyrrole and its application. Sens Actuators A 150:272–276

    Article  CAS  Google Scholar 

  30. Hara S, Zama T, Ametani A, Takashima W, Kaneto K (2004) TFSI-doped polypyrrole actuator with 26 % strain. J Mater Chem 14:1516–1517

    Article  CAS  Google Scholar 

  31. Hara S, Zama T, Takashima W, Kaneto K (2004) Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J 36:151–161

    Article  CAS  Google Scholar 

  32. Hara S, Zama T, Takashima W, Kaneto K (2004) Gel-like polypyrrole based artificial muscles with extremely large strain. Polym J 36:933–936

    Article  CAS  Google Scholar 

  33. Hara S, Zama T, Ametani A, Takashima W, Kaneto K (2004) Enhancement in electrochemical strain of a polypyrrole–metal composite film actuator. J Mater Chem 14:2724–2725

    Article  CAS  Google Scholar 

  34. Santra S, Holloway P, Batich CD (2002) Fabrication and testing of a magnetically actuated micropump. Sens Actuators B 87:358–364

    Article  CAS  Google Scholar 

  35. Ling SJ, Yuan JL, Sung JL, Yi CH, Wu SY, Mi CT, Ching CH (2007) A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices 9:185–194

    Article  Google Scholar 

  36. Geipel A, Goldschmidtboing F, Doll A, Jantscheff P, Esser N, Massing U, Woias P (2008) An implantable active Microport based on a self-priming high-performance two-stage micropump. Sens Actuators A 145:414–422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Fuchiwaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Fuchiwaki, M. (2014). Micro Pump Driven by a Pair of Conducting Polymer Soft Actuators. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_31

Download citation

Publish with us

Policies and ethics