Skip to main content

Distributed Parameter System Modeling

  • Chapter
  • First Online:
  • 2702 Accesses

Abstract

This chapter discusses a distributed parameter system modeling of ionic polymer-metal composite actuators based on modified Yamaue’s electro-stress diffusion coupling model. The lowest order linear time invariant state equation with the spatial variable is derived to carry out the simulation. An introductory method for simulation based on the state space model is also shown. The results of the simulation demonstrate the effectiveness of the derived model by showing the differences of the responses for the different cation species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bar-Cohen Y (ed) (2004) Electroactive polymer (eap) actuators as artificial muscles: reality, potential, and challenges. 2nd edn. SPIE Press, Washington

    Google Scholar 

  2. Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites:I fundamentals. Smart Mater Struct 10:819–833

    Article  CAS  Google Scholar 

  3. Mallavarapu K, Leo D (2001) Feedback control of the bending response of ionic polymer actuators. J Intell Mater Syst Struct 12:143–155

    Article  Google Scholar 

  4. Bao X, Bar-Cohen Y, Lih SS (2002) Measurements and macro models of ionomeric polymer-metal composites. Proc SPIE 4695:220–227

    Article  CAS  Google Scholar 

  5. Newbury KM, Leo DJ (2003) Linear electromechanical model of ionic polymer transducers-part I: model development. J Intell Mater Syst Struct 14:333–342

    Article  Google Scholar 

  6. Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo ZW (2004) Development of an artificial muscle linear actuator using ionic polymer-metal composites. Adv Robot 18(4):383–399

    Article  Google Scholar 

  7. Chen Z, Tan X, Shahinpoor M (2005) Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators. Proceedings of the 2005 IEEE/ASME international conference on advanced intelligent mechatronics, pp 60–65

    Google Scholar 

  8. Kothera C, Leo D (2005) Bandwidth characterization in the micropositioning of ionic polymer actuators. J Intell Mater Syst Struct 16(1):3–13

    Article  CAS  Google Scholar 

  9. Kang S, Shin J et al. (2007) Robust control of ionic polymer-metal composites. Smart Struct Mater 16:2457–2463

    Article  CAS  Google Scholar 

  10. Chen Z, Tan X (2008) A scalable dynamic model of ionic polymer metal composite actuators. Proc SPIE 6927:69270I

    Article  Google Scholar 

  11. Chen Z, Tan X (2008) A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron 13(5):519–529

    Article  Google Scholar 

  12. Yamakita M et al. (2008) Integrated design of an ionic polymer-metal composite actuator/sensor. Adv Robot 22:913–928

    Article  Google Scholar 

  13. Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli part ii. response kinetics. J Electroanal Chem 480:186–198

    Article  CAS  Google Scholar 

  14. de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518

    Article  Google Scholar 

  15. Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331

    Article  CAS  Google Scholar 

  16. Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) Modeling of nafion-Pt composite actuators (ICPF) by ionic motion. Proc SPIE 3987:262–272

    Article  CAS  Google Scholar 

  17. Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38:1349–1356

    Article  CAS  Google Scholar 

  18. Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912

    Article  Google Scholar 

  19. Ljung L, Glad T (1994) Modeling of dynamic systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  20. H. Khalil (2002) Nonlinear systems. 3rd Ed., Prentice Hall, Englewood Cliffs

    Google Scholar 

  21. van der Schaft A, Maschke B (2002) Hamiltonian formulation of distributed parameter systems with boundary energy flow. J Geom Phys 42:166–194

    Article  Google Scholar 

  22. Macchelli A, Maschke B (2009) Infinite-dimensional port-hamiltonian systems. Modeling and control of complex physical systems–the port-hamiltonian approach. Springer, NewYork

    Google Scholar 

  23. Nishida G, Takagi K, Maschke B, Osada T (2011) Multi-scale distributed parameter system modeling of ionic polymer-metal composite soft actuator. Contr Eng Pract 19:321–334

    Article  Google Scholar 

  24. Osada T, Takagi K, Hayakawa Y, Luo ZW, Asaka K (2008) State space modeling of ionic polymer-metal composite actuators based on electrostress diffusion coupling theory. Proceedings of 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 119–124

    Google Scholar 

  25. Takagi K, Osada T, Asaka K, Hayakawa Y, Luo ZW (2009) Distributed parameter system modeling of IPMC actuators with the electro-stress diffusion coupling theory. Proc SPIE 7287:72871Q

    Article  Google Scholar 

  26. Asaka K, Fujiwara N, Oguro K, Onishi K, Sewa S (2011) State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators. J Electroanal Chem 505:24–32

    Article  Google Scholar 

  27. Takagi K, Nakabo Y, Luo ZW, Asaka K (2007) On a distributed parameter model for electrical impedance of ionic polymer. Proc SPIE 6524:652416

    Article  Google Scholar 

  28. Farinholt KM, Leo DJ (2005) Electrical impedance modeling of ionic polymer transducers. Proc SPIE 5761:69–80

    Article  CAS  Google Scholar 

  29. Takagi K, Jikuya I, Nishida G, Maschke B, Asaka K (2009) A study on the discretization of a distributed RC circuit model. Proceedings ICCAS-SICE 2009, pp 677–680

    Google Scholar 

  30. http://www.gnu.org/software/octave/

  31. http://www.scilab.org/

  32. http://www.netlib.org/

Download references

Acknowledgements

The authors appreciate Mr. Takaaki Osada for his work on the simulation and the experiment during his master program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takagi, K., Nishida, G., Maschke, B., Asaka, K. (2014). Distributed Parameter System Modeling. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_23

Download citation

Publish with us

Policies and ethics