Skip to main content

Material Modeling

  • Chapter
  • First Online:
Soft Actuators
  • 2698 Accesses

Abstract

Attention has been focused on ionic conducting polymer-metal composites (IPMCs) as intelligent materials for artificial muscles and robotics for recent years. The two-dimensional finite element formulation based on the Galerkin method is conducted for the basic field equations governing electrochemical response of IPMC beams with two pairs of electrodes upon applied electric field. The three-dimensional finite element analysis is conducted for the deformation of IPMC beams due to water redistribution in the beams associated with the electrochemical response. Some numerical studies are carried out in order to show the validity of the present formulation. A computational modeling is also established for the electrochemical-poroelastic behavior of conducting polymers such as polypyrrole. The three-dimensional continuum modeling given by Della Santa et al. for the passive, poroelastic behavior of conducting polymers is extended to the formulation for the active, electrochemical-poroelastic formulation according to Onsager-like laws, which is combined with the one-dimensional equation for ionic transportation. The validity of the finite element formulation for these governing equations has been demonstrated by numerical studies for the passive and active responses of polypyrrole membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uchida M et al (2002) SPIE conference on electroactive polymer actuators and devices, vol 4695, pp 57–66

    Google Scholar 

  2. Oguro K et al (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromach Soc 5:27–30

    Google Scholar 

  3. Kanno T et al (1996) Modeling of ICPF (Ionic Conducting Polymer Gel Film) actuator (1st report, fundamental characteristics and black-box modeling). Trans JSME Ser C 62(598):2299–2305

    Article  Google Scholar 

  4. Shahinpoor M et al (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Mater Struct 7:R15–R30

    Article  CAS  Google Scholar 

  5. Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331

    Article  CAS  Google Scholar 

  6. Tadokoro S et al (2000) An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. In: Proceedings of the 2000 I.E. International conference on robotics and automation, San Francisco, pp 1340–1346

    Google Scholar 

  7. Popovic S, Taya M (2001) 2001 Mechanics and materials summer conference, UCSD, San Diego

    Google Scholar 

  8. Toi Y, Kang SS (2004) Finite element modeling of electrochemical-mechanical behaviors of ionic conducting polymer-metal composites. Trans JSME Ser A 70(689):9–16

    Article  CAS  Google Scholar 

  9. Toi Y, Kang SS (2005) Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer-metal composite beams. Comput Struct 83:2573–2583

    Article  Google Scholar 

  10. Finlayson BA (1972) The method of weighted residuals and variational principles. Academic, New York

    Google Scholar 

  11. Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer–metal composites. J Appl Phys 92(5):2899–2915

    Article  CAS  Google Scholar 

  12. Kang SS, Toi Y (2005) Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer actuators. Trans JSME Ser A 71(702):225–232

    Article  Google Scholar 

  13. Kang SS, Toi Y (2006) Finite element analysis of electrochemical-mechanical response of Flemion-based ionic conducting polymer actuators. Trans JSME Ser A 72(716):397–404

    Article  CAS  Google Scholar 

  14. Jung WS et al (2010) Computatioinal modeling of electrochemical-mechanical behaviors of Flemion-based actuators considering the effects of electro-osmosis and electrolysis. Comput Struct 88(15/16):938–948

    Article  Google Scholar 

  15. Della Santa A et al (1997) Passive mechanical properties of polypyrrole films: a continuum, poroelastic model. Mater Sci Eng C5:101–109

    Article  CAS  Google Scholar 

  16. Della Santa A et al (1997) Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth Met 90:93–100

    Article  CAS  Google Scholar 

  17. Della Santa A et al (1997) Characterization and modelling of a conducting polymer muscle-like linear actuator. Smart Mater Struct 6:23–34

    Article  CAS  Google Scholar 

  18. Cortes MT, Moreno JC (2003) Artificial muscles based on conducting polymers. e-Polymers 41:1–42

    Google Scholar 

  19. Hara S et al (2004) Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J 36(2):151–161

    Article  CAS  Google Scholar 

  20. Toi Y, Jung WS (2006) Finite element modeling of electrochemical-poroelastic behaviors of conducting polymer films. Trans JSME Ser A 72(719):1065–1071

    Article  CAS  Google Scholar 

  21. Toi Y, Jung WS (2007) Finite element modeling of electrochemical-poroelastic behaviors of conducting polymers. Comput Struct 85(19/20):1453–1460

    Article  Google Scholar 

  22. Biot MA (1954) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185

    Article  Google Scholar 

  23. Katchalsky A, Curran PF (1967) Non-equilibrium thermodynamics in biophysics. Harvard University Press, Cambridge

    Google Scholar 

  24. Alici G et al (2006) Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications. Sens Actuators A 126:396–404

    Article  CAS  Google Scholar 

  25. Metz P et al (2006) A finite element model for bending behaviour of conducting polymer electromechanical actuators. Sens Actuators A 130–131:1–11

    Article  Google Scholar 

  26. Alici G, Huynh NN (2006) Towards improving positioning accuracy of conducting polymer actuators. In: International workshop on advanced motion control, pp 478–483

    Google Scholar 

  27. Toi Y, Jung WS (2008) Computational modeling of electrochemical-poroelastic bending behaviors of conducting polymer (PPy) membranes. Trans JSME Ser A 74(740):513–519

    Article  CAS  Google Scholar 

  28. Jung WS, Toi Y (2010) Finite element analysis of electrochemical-poroelastic behaviors of polyaniline fibers. Trans JSME Ser A 76(770):1263–1269

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Toi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Toi, Y. (2014). Material Modeling. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_22

Download citation

Publish with us

Policies and ethics