Skip to main content

Piezoelectric Polymers

  • Chapter
  • First Online:

Abstract

The study of the piezoelectric polymers has advanced in the last few decades, and their practical application to sensor and actuator devices has progressed. The piezoelectric polymers in practical use are divided into the following classes with different piezoelectric characteristics: chiral polymers (optically active polymers), ferroelectric polymers, and cellular electrets. The piezoelectricity of a chiral polymer is in response to shear strain, that of a ferroelectric polymer is in response to tensile strain, and that of cellular electrets is in response to strain perpendicular to film surface. In this chapter, the fundamental properties and applications of these different types of polymers are systematically discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Galetti P, DeRossi D, DeReggi A (1988) Medical applications of piezoelectric polymers. Gordon and Breach, New York

    Google Scholar 

  2. Wang T, Herbert J, Glass A (1988) The applications of ferroelectric polymers. Blackie, Glasgow

    Google Scholar 

  3. Nalwa H (ed) (1995) Ferroelectric polymers. Marcel Dekker, Inc., New York

    Google Scholar 

  4. Fukada E (2000) History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1110–1119

    Google Scholar 

  5. Uchino K (2000) Ferroelectric devices. Marcel Dekker, Inc., New York

    Google Scholar 

  6. Lang SB (2005) Guide to the literature of piezoelectricity and pyroelectricity. Ferroelectrics 321:91–204

    Article  CAS  Google Scholar 

  7. Fukada E (2006) Recent developments of polar piezoelectric polymers. IEEE Trans Dielectr Electr Insul 13:1110–1119

    CAS  Google Scholar 

  8. Carpi F, Smela E (eds) (2009) Biomedical applications of electroactive polymer actuators. Wiley, Chichester

    Google Scholar 

  9. Tajitsu Y (2013) Fundamental study on improvement of piezoelectricity of poly(l-Lactic Acid) and its application to film actuators. IEEE Trans Ultrason Ferroelectr Freq Control 60:1625–1629

    Article  Google Scholar 

  10. Bauer S, Gerhard R, Sessler G (2008) Ferroelectrets: soft electroactive foams for transducers. Phys Today 57:7–43

    Google Scholar 

  11. Nye J (1985) Physical properties of crystals. Clarendon, Oxford

    Google Scholar 

  12. Kobayashi J, Asahi T, Fukada E, Shikinami Y (1995) Structural and optical properties of polylactic acid. J Appl Phys 77:2957–2972

    Article  CAS  Google Scholar 

  13. Aleman C, Lotz B, Puiggali J (2001) Crystal structure of the alpha-form of poly(L-lactide). Macromolecules 34:4795–4801

    Article  CAS  Google Scholar 

  14. Tajitsu Y (2002) Giant optical rotatory power and light modulation by polylactic acid film. In: Bar-Cohen Y, Zhang QM, Fukada E, Bauer S, Chrisey DB, Danforth SC (eds) Materials research society symposium proceedings: topics in electroactive polymers and rapid prototyping, Boston, November 2001, vol 698. Warrendale, Pennsylvania, pp 125–136

    Google Scholar 

  15. Imoto K, Tahara K, Yamakita T, Tajitsu Y (2009) Piezoelectric motion of poly-l-lactic acid film improved by supercritical CO2 treatment. Jpn J Appl Phys 48:09KE06

    Article  Google Scholar 

  16. Shiomi Y, Onishi K, Nakiri T, Imoto K, Ariura F, Miyabo A, Date M, Fukada E, Tajitsu Y (2013) Improvement of piezoelectricity of poly(l-lactide) film by using acrylic symmetric block copolymer as additive. Jpn J Appl Phys 52:09KE02

    Article  Google Scholar 

  17. Honda M, Hayashi K, Morii K, Kawai S, Morimoto Y, Tajitsu Y (2007) Piezoelectricity of chiral polymeric fibers. Jpn J Appl Phys 46:7122–7124

    Article  CAS  Google Scholar 

  18. Sawano M, Tahara K, Orita Y, Nakayama M, Tajitsu Y (2008) New design of actuator using shear piezoelectricity of a chiral polymer, and prototype device. Polym Int 59:365–370

    Article  Google Scholar 

  19. Ito S, Imoto K, Takai K, Kuroda S, Kamimura Y, Kataoka T, Kawai N, Date M, Fukada E, Tajitsu Y (2012) Sensing using piezoelectric chiral polymer fiber. Jpn J Appl Phys 51:09LD16

    Article  Google Scholar 

  20. Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R, Bauer S, Lacour S, Wagner S (2006) Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Appl Phys Lett 89:073501–073503

    Article  Google Scholar 

  21. Mossi K, Selby G, Bryant M (1998) Tin-layer composite unimorph ferroelectric driver and sensor properties. Mater Lett 35:39–49

    Article  CAS  Google Scholar 

  22. Williams R, Inman D, Schultz M, Hyer M, Wilkie W (2004) Nonlinear tensile and shear behaviour of macro fiber vomposite actuators. J Comp Mater 38:855–869

    Article  CAS  Google Scholar 

  23. Blinzler B, Goldberg R, Binienda W (2012) Macroscale independently homogenized subcells for modeling braided composites. AIAA J 50:1873–1884

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiro Tajitsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Tajitsu, Y. (2014). Piezoelectric Polymers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_15

Download citation

Publish with us

Policies and ethics