Skip to main content

Ion Gels for Ionic Polymer Actuators

  • Chapter
  • First Online:
Book cover Soft Actuators

Abstract

Ionic polymer actuators are driven by the migration or diffusion of ions and generally exhibit significant deformation (i.e., bending) under low-voltage (<5 V) applications. However, the durability of conventional ionic polymer actuators decreases under open atmosphere owing to the evaporation of solvents, which are essential for the movement of ions, from the actuators. In order to overcome this drawback, ionic polymer actuators that can be operated under open atmosphere and even under vacuum are being developed using ionic liquids (ILs). Combining macromolecules with ILs as additives can result in highly ion-conducting polymer electrolytes (ion gels) suitable for applications in ionic polymer actuators. However, the contribution of polymeric materials to the high performance of IL-based polymer actuators is yet to be elucidated. In this chapter, IL-based polymer electrolytes comprising block copolymers and polyimides are demonstrated to enable easily processable ionic polymer actuators with high performance and durability. The displacement response is also analyzed using our proposed displacement model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press, Washington

    Google Scholar 

  2. Pelrine R, Kornbluh R, Pei QB, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839

    Article  CAS  Google Scholar 

  3. Smela E (2003) Conjugated polymer actuators for biomediacal applications. Adv Mater 15:481–494

    Article  CAS  Google Scholar 

  4. Shahinpoor M (2003) Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim Acta 48:2343–2353

    Article  CAS  Google Scholar 

  5. Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212

    Article  CAS  Google Scholar 

  6. Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H (1995) Bending of polyelectrolyte membrane–platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440

    Article  CAS  Google Scholar 

  7. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344

    Article  CAS  Google Scholar 

  8. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987

    Article  CAS  Google Scholar 

  9. Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A 115:79–90

    Article  CAS  Google Scholar 

  10. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413

    Article  CAS  Google Scholar 

  11. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  12. Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    Article  CAS  Google Scholar 

  13. Wilkes JS (2002) A short history of ionic liquids—from Molten salts to neoteric solvents. Green Chem 4:73–80

    Article  CAS  Google Scholar 

  14. Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365

    Article  CAS  Google Scholar 

  15. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  16. Watanabe M, Yamada SI, Sanui K, Ogata N (1993) High ionic conductivity of new polymer electrolytes consisting of polypyridinium, pyridinium and aluminium chloride. J Chem Soc Chem Commun 929–931

    Google Scholar 

  17. Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270

    Article  CAS  Google Scholar 

  18. Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983

    Article  CAS  Google Scholar 

  19. Carlin RT, Fuller J (1997) Ionic liquid–polymer gel catalytic membrane. Chem Commun 1345–1346

    Google Scholar 

  20. Fuller J, Breda AC, Carlin RT (1997) Ionic liquid–polymer gel electrolytes. J Electrochem Soc 144:L67–L70

    Article  CAS  Google Scholar 

  21. He Y, Lodge TP (2008) Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 41:167–174

    Article  CAS  Google Scholar 

  22. Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749

    Article  CAS  Google Scholar 

  23. Ueki T, Watanabe M (2012) Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull Chem Soc Jpn 85:33–50

    Article  CAS  Google Scholar 

  24. Seki S, Susan MABH, Kaneko T, Tokuda H, Noda A, Watanabe M (2005) Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. J Phys Chem B 109:3886–3892

    Article  CAS  Google Scholar 

  25. Mukai K, Asaka K, Kiyohara K, Sugino T, Takeuchi I, Fukushima T, Aida T (2008) High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim Acta 53:5555–5562

    Article  CAS  Google Scholar 

  26. Vidal F, Plesse C, Teyssié D, Chevrot C (2004) Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth Met 142:287–291

    Article  CAS  Google Scholar 

  27. Takeuchi I, Asaka K, Kiyohara K, Sugino T, Terasawa N, Mukai K, Shiraishi S (2009) Electromechanical behavior of a fully plastic actuator based on dispersed nano-carbon/ionic-liquid-gel electrodes. Carbon 47:1373–1380

    Article  CAS  Google Scholar 

  28. Terasawa N, Takeuchi I, Matsumoto H, Mukai K, Asaka K (2011) High performance polymer actuator based on carbon nanotube-ionic liquid gel: effect of ionic liquid. Sens Actuators B 156:539–545

    Article  CAS  Google Scholar 

  29. Akle BJ, Bennett MD, Leo DJ (2006) High-strain ionomeric–ionic liquid electroactive actuators. Sens Actuators A 126:173–181

    Article  CAS  Google Scholar 

  30. Torop J, Palmre V, Arulepp M, Sugino T, Asaka K, Aabloo A (2011) Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 49:3113–3119

    Article  CAS  Google Scholar 

  31. Kokubo H, Honda T, Imaizumi S, Dokko K, Watanabe M (2013) Effects of carbon electrode materials on performance of ionic polymer actuators having electric double-layer capacitor structure. Electrochem 81:849–852

    Article  CAS  Google Scholar 

  32. Gao R, Wang D, Heflin JR, Long TE (2012) Imidazolium sulfonate-containing pentablock copolymer–ionic liquid membranes for electroactive actuators. J Mater Chem 22:13473–13476

    Article  CAS  Google Scholar 

  33. Green MD, Wang D, Hemp ST, Choi JH, Winey KI, Heflin JR, Long TE (2012) Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer 53:3677–3686

    Article  CAS  Google Scholar 

  34. Wu T, Wang D, Zhang M, Heflin JR, Moore RB, Long TE (2012) RAFT synthesis of ABA triblock copolymers as ionic liquid-containing electroactive membranes. ACS Appl Mater Interfaces 4:6552–6559

    Article  CAS  Google Scholar 

  35. Hatipoglu G, Liu Y, Zhao R, Yoonessi M, Tigelaar DM, Tadigadapa S, Zhang QM (2012) A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators. Smart Mater Struct 21:055015

    Article  Google Scholar 

  36. Saito S, Katoh Y, Kokubo H, Watanabe M, Maruo S (2009) Development of a soft actuator using a photocurable ionic gel. J Micromech Microeng 19:035005

    Article  Google Scholar 

  37. Imaizumi S, Kokubo H, Watanabe M (2012) Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 45:401–409

    Article  CAS  Google Scholar 

  38. Imaizumi S, Kato Y, Kokubo H, Watanabe M (2012) Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures. J Phys Chem B 116:5080–5089

    Article  CAS  Google Scholar 

  39. Imaizumi S, Ohtsuki Y, Yasuda T, Kokubo H, Watanabe M (2013) Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials. ACS Appl Mater Interfaces 5:6307–6315

    Article  CAS  Google Scholar 

  40. Patten TE, Xia J, Abernathy T, Matyjaszewski K (1996) Polymers with very low polydispersities from atom transfer radical polymerization. Science 272:866–868

    Article  CAS  Google Scholar 

  41. Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107:2270–2299

    Article  CAS  Google Scholar 

  42. Ueki T, Karino T, Kobayashi Y, Shibayama M, Watanabe M (2007) Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid. J Phys Chem B 111:4750–4754

    Article  CAS  Google Scholar 

  43. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600

    Article  CAS  Google Scholar 

  44. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110

    Article  CAS  Google Scholar 

  45. Tokuda H, Tabata S, Susan MABH, Hayamizu K, Watanabe M (2004) Design of polymer electrolytes based on a lithium salt of a weakly coordinating anion to realize high ionic conductivity with fast charge-transfer reaction. J Phys Chem B 108:11995–12002

    Article  CAS  Google Scholar 

  46. Hickner M, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4611

    Article  CAS  Google Scholar 

  47. Lee SY, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:9764–9773

    Article  CAS  Google Scholar 

  48. Yasuda T, Nakamura S, Honda Y, Kinugawa K, Lee SY, Watanabe M (2012) Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces 4:1783–1790

    Article  CAS  Google Scholar 

  49. Michot T, Nishimoto A, Watanabe M (2000) Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45:1347–1360

    Article  CAS  Google Scholar 

  50. Essafi W, Gebel G, Mercier R (2004) Sulfonated polyimide ionomers: a structural study. Macromolecules 37:1431–1440

    Article  CAS  Google Scholar 

  51. Bae B, Yoda T, Miyatake K, Uchida H, Watanabe M (2010) Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. Angew Chem Int Ed 49:317–320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-aid for Scientific Research on Priority Areas (No. 438–19016014 and No.452-17073009) and Basic Research A (No. 23245046) from the MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Watanabe, M., Imaizumi, S., Yasuda, T., Kokubo, H. (2014). Ion Gels for Ionic Polymer Actuators. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_10

Download citation

Publish with us

Policies and ethics