Skip to main content

Membrane Skeleton in Schmidt–Lanterman Incisure in Schwann Cells of the Peripheral Nervous System

  • Chapter
  • First Online:
  • 1221 Accesses

Abstract

Schmidt–Lanterman incisure (SLI), a truncated cone–shape in a myelin internode, is a specific feature of myelinated nerve fibers in the peripheral nervous system (PNS). In this review, we focus on the membrane skeleton in SLI. First, we describe a membrane skeletal protein, 4.1G, and its relationship to membrane palmitoylated protein 6 (MPP6) and cell adhesion molecule 4 (CADM4), which is analogous to a molecular complex in the erythrocyte membrane skeleton, 4.1R–MPP1–glycophorin C. In 4.1G-deficient nerve fibers, the height of the SLI-truncated cones was reduced compared to that in the wild type. 4.1G was essential for molecular targeting of MPP6 and CADM4 in SLI. Second, we discuss a signal transduction protein, Src, in the SLIs of mouse sciatic nerves, and its phosphorylation states under normal conditions or deletion of 4.1G. Normally, Src is phosphorylated in Y527, but not in Y418. Developmentally, the phosphorylation in Y418 appeared in SLIs of early postnatal mouse sciatic nerves. An MPP6–Src interaction was found, and the phosphorylation of Y418 appeared in 4.1G-deficient nerve fibers. The functional meaning of the Src localization in SLI is discussed. Here, we demonstrate a novel Src–MPP6–4.1G–CADM4 membrane skeletal molecular complex in SLIs, with potential roles in regulation of adhesion and signal transduction in Schwann cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alanne MH, Pummi K, Heape AM, Grenman R, Peltonen J, Peltonen S (2009) Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem 57:523–529

    Article  CAS  PubMed  Google Scholar 

  • Baines AJ (2010) The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244:99–131

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner M, Weiss A, Fritzius T, Heinrich J, Moelling K (2009) The PDZ protein MPP2 interacts with c-Src in epithelial cells. Exp Cell Res 315:2888–2898

    Article  CAS  PubMed  Google Scholar 

  • Bensenor LB, Barlan K, Rice SE, Fehon RG, Gelfand VI (2010) Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants. Proc Natl Acad Sci USA 107:7311–7316

    Article  CAS  PubMed  Google Scholar 

  • Biederer T, Sudhof TC (2001) CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem 276:47869–47876

    CAS  PubMed  Google Scholar 

  • Bohl J, Brimer N, Lyons C, Vande Pol SB (2007) The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J Biol Chem 282:9392–9400

    Article  CAS  PubMed  Google Scholar 

  • Bolino A, Bolis A, Previtali SC, Dina G, Bussini S, Dati G, Amadio S, Del Carro U, Mruk DD, Feltri ML, Cheng CY, Quattrini A, Wrabetz L (2004) Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167:711–721

    Article  CAS  PubMed  Google Scholar 

  • Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A, Chishti AH, Hanada T, Quattrini A, Previtali SC, Biffi A, Bolino A (2009) Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J Neurosci 29:8858–8870

    Article  CAS  PubMed  Google Scholar 

  • Buttermore ED, Dupree JL, Cheng J, An X, Tessarollo L, Bhat MA (2011) The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons. J Neurosci 31:8013–8024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo Dotto G (1998) Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 141:1449–1465

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi LS, Marsh HM, Shang X, Zheng Y, Basson MD (2007) Repetitive deformation activates focal adhesion kinase and ERK mitogenic signals in human Caco-2 intestinal epithelial cells through Src and Rac1. J Biol Chem 282:14–28

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Terada N, Ohno N, Saitoh S, Saitoh Y, Ohno S (2011) Immunolocalization of membrane skeletal protein, 4.1G, in enteric glial cells in the mouse large intestine. Neurosci Lett 488:193–198

    Article  CAS  PubMed  Google Scholar 

  • Cotter L, Ozcelik M, Jacob C, Pereira JA, Locher V, Baumann R, Relvas JB, Suter U, Tricaud N (2010) Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328:1415–1418

    Article  CAS  PubMed  Google Scholar 

  • Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27(4):167–178

    Article  PubMed  Google Scholar 

  • de Mendoza A, Suga H, Ruiz-Trillo I (2010) Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol 10:93

    Article  PubMed Central  PubMed  Google Scholar 

  • Discher DE, Winardi R, Schischmanoff PO, Parra M, Conboy JG, Mohandas N (1995) Mechanochemistry of protein 4.1’s spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol 130:897–907

    Article  CAS  PubMed  Google Scholar 

  • Fujita E, Kouroku Y, Ozeki S, Tanabe Y, Toyama Y, Maekawa M, Kojima N, Senoo H, Toshimori K, Momoi T (2006) Oligo-astheno-teratozoospermia in mice lacking RA175/TSLC1/SynCAM/IGSF4A, a cell adhesion molecule in the immunoglobulin superfamily. Mol Cell Biol 26:718–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Funke L, Dakoji S, Bredt DS (2005) Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 74:219–245

    Article  CAS  PubMed  Google Scholar 

  • Gauthier E, Guo X, Mohandas N, An X (2011) Phosphorylation-dependent perturbations of the 4.1R-associated multiprotein complex of the erythrocyte membrane. Biochemistry 50:4561–4567

    Article  CAS  PubMed  Google Scholar 

  • Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, Wichert SP, Mobius W, Liu X, Lappe-Siefke C, Rossner MJ, Groszer M, Suter U, Frahm J, Boretius S, Nave KA (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30:8953–8964

    Article  CAS  PubMed  Google Scholar 

  • Hossain S, Fragoso G, Mushynski WE, Almazan G (2010) Regulation of peripheral myelination by Src-like kinases. Exp Neurol 226:47–57

    Article  CAS  PubMed  Google Scholar 

  • Houshmandi SS, Emnett RJ, Giovannini M, Gutmann DH (2009) The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol 29:1472–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanovic A, Horresh I, Golan N, Spiegel I, Sabanay H, Frechter S, Ohno S, Terada N, Mobius W, Rosenbluth J, Brose N, Peles E (2012) The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. J Cell Biol 196:337–344

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Cai W, Lee HK, Pellegatta M, Shin YK, Jang SY, Suh DJ, Wrabetz L, Feltri ML, Park HT (2011) Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration. J Neurosci 31:2009–2015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamberov E, Makarova O, Roh M, Liu A, Karnak D, Straight S, Margolis B (2000) Molecular cloning and characterization of Pals, proteins associated with mLin-7. J Biol Chem 275:11425–11431

    Article  CAS  PubMed  Google Scholar 

  • Lawler K, O’Sullivan G, Long A, Kenny D (2009) Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 100:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17:459–465

    Article  CAS  PubMed  Google Scholar 

  • Lozovatsky L, Abayasekara N, Piawah S, Walther Z (2009) CASK deletion in intestinal epithelia causes mislocalization of LIN7C and the DLG1/Scrib polarity complex without affecting cell polarity. Mol Biol Cell 20:4489–4499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lue RA, Marfatia SM, Branton D, Chishti AH (1994) Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc Natl Acad Sci USA 91:9818–9822

    Article  CAS  PubMed  Google Scholar 

  • Lue RA, Brandin E, Chan EP, Branton D (1996) Two independent domains of hDlg are sufficient for subcellular targeting: the PDZ1-2 conformational unit and an alternatively spliced domain. J Cell Biol 135:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM, Grochowalska R, Heger E, Sikorski AF (2013) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta, doi: 10.1016/j.bbamem.2013.05.002

  • Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL (2007) Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J Cell Biol 178:861–874

    Article  CAS  PubMed  Google Scholar 

  • McLachlan RW, Yap AS (2011) Protein tyrosine phosphatase activity is necessary for E-cadherin-activated Src signaling. Cytoskeleton 68:32–43

    Article  CAS  PubMed  Google Scholar 

  • McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS (2007) E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell 18:3214–3223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948

    Article  CAS  PubMed  Google Scholar 

  • Nedrelow JH, Cianci CD, Morrow JS (2003) c-Src binds alpha II spectrin’s Src homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176. J Biol Chem 278:7735–7741

    Article  CAS  PubMed  Google Scholar 

  • Nix SL, Chishti AH, Anderson JM, Walther Z (2000) hCASK and hDlg associate in epithelia, and their src homology 3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions. J Biol Chem 275:41192–41200

    Article  CAS  PubMed  Google Scholar 

  • Novak N, Bar V, Sabanay H, Frechter S, Jaegle M, Snapper SB, Meijer D, Peles E (2011) N-WASP is required for membrane wrapping and myelination by Schwann cells. J Cell Biol 192:243–250

    Article  CAS  PubMed  Google Scholar 

  • Nunomura W, Takakuwa Y, Parra M, Conboy J, Mohandas N (2000) Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. J Biol Chem 275:24540–24546

    Article  CAS  PubMed  Google Scholar 

  • Ogita H, Takai Y (2006) Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 58:334–343

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Terada N, Fujii Y, Ueda H (1994) Membrane skeleton in fresh unfixed erythrocytes as revealed by a rapid-freezing and deep-etching method. J Anat 185:415–420

    PubMed  Google Scholar 

  • Ohno S, Terada N, Fujii Y, Ueda H, Takayama I (1996) Dynamic structure of glomerular capillary loop as revealed by an in vivo cryotechnique. Virchows Arch 427:519–527

    Article  CAS  PubMed  Google Scholar 

  • Ohno N, Terada N, Yamakawa H, Komada M, Ohara O, Trapp BD, Ohno S (2006) Expression of protein 4.1G in Schwann cells of the peripheral nervous system. J Neurosci Res 84:568–577

    Article  CAS  PubMed  Google Scholar 

  • Ohno N, Terada N, Komada M, Saitoh S, Costantini F, Pace V, Germann PG, Weber K, Yamakawa H, Ohara O, Ohno S (2009) Dispensable role of protein 4.1B/DAL-1 in rodent adrenal medulla regarding generation of pheochromocytoma and plasmalemmal localization of TSLC1. Biochim Biophys Acta 1793:506–515

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Terada N, Ohno N, Saitoh S, Saitoh Y, Fujii Y (2010) Significance of ‘in vivo cryotechnique’ for morphofunctional analyses of living animal organs. J Electron Microsc 59:395–408

    Article  Google Scholar 

  • Ozcelik M, Cotter L, Jacob C, Pereira JA, Relvas JB, Suter U, Tricaud N (2010) Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J Neurosci 30:4120–4131

    Article  CAS  PubMed  Google Scholar 

  • Pang JH, Kraemer A, Stehbens SJ, Frame MC, Yap AS (2005) Recruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function. J Biol Chem 280:3043–3050

    Article  CAS  PubMed  Google Scholar 

  • Park HT, Feltri ML (2011) Rac1 GTPase controls myelination and demyelination. Bioarchitecture 1:110–113

    Article  PubMed Central  PubMed  Google Scholar 

  • Parra M, Gascard P, Walensky LD, Snyder SH, Mohandas N, Conboy JG (1998) Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 49:298–306

    Article  CAS  PubMed  Google Scholar 

  • Peters LL, Weier HU, Walensky LD, Snyder SH, Parra M, Mohandas N, Conboy JG (1998) Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human. Genomics 54:348–350

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E (2002) Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 159:361–372

    Article  CAS  PubMed  Google Scholar 

  • Quinn BJ, Welch EJ, Kim AC, Lokuta MA, Huttenlocher A, Khan AA, Kuchay SM, Chishti AH (2009) Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity. Proc Natl Acad Sci USA 106:19842–19847

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AB (2007) p120-catenin: past and present. Biochim Biophys Acta 1773:2–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR (1992) p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo. Oncogene 7:2439–2445

    CAS  PubMed  Google Scholar 

  • Saitoh Y, Terada N, Saitoh S, Ohno N, Jin T, Ohno S (2012) Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by “in vivo cryotechnique”. Histochem Cell Biol 137:137–151

    Article  CAS  PubMed  Google Scholar 

  • Scheiermann C, Meda P, Aurrand-Lions M, Madani R, Yiangou Y, Coffey P, Salt TE, Ducrest-Gay D, Caille D, Howell O, Reynolds R, Lobrinus A, Adams RH, Yu AS, Anand P, Imhof BA, Nourshargh S (2007) Expression and function of junctional adhesion molecule-C in myelinated peripheral nerves. Science 318:1472–1475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scherer SS, Gutmann DH (1996) Expression of the neurofibromatosis 2 tumor suppressor gene product, merlin, in Schwann cells. J Neurosci Res 46:595–605

    Article  CAS  PubMed  Google Scholar 

  • Seo PS, Jeong JJ, Zeng L, Takoudis CG, Quinn BJ, Khan AA, Hanada T, Chishti AH (2009) Alternatively spliced exon 5 of the FERM domain of protein 4.1R encodes a novel binding site for erythrocyte p55 and is critical for membrane targeting in epithelial cells. Biochim Biophys Acta 1793:281–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shindo M, Wada H, Kaido M, Tateno M, Aigaki T, Tsuda L, Hayashi S (2008) Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development (Camb) 135:1355–1364

    CAS  Google Scholar 

  • Shingai T, Ikeda W, Kakunaga S, Morimoto K, Takekuni K, Itoh S, Satoh K, Takeuchi M, Imai T, Monden M, Takai Y (2003) Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell–cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem 278:35421–35427

    Article  CAS  PubMed  Google Scholar 

  • Spiegel I, Adamsky K, Eshed Y, Milo R, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN, Peles E (2007) A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci 10:861–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suetsugu S, Hattori M, Miki H, Tezuka T, Yamamoto T, Mikoshiba K, Takenawa T (2002) Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev Cell 3:645–658

    Article  CAS  PubMed  Google Scholar 

  • Surace EI, Strickland A, Hess RA, Gutmann DH, Naughton CK (2006) Tslc1 (nectin-like molecule-2) is essential for spermatozoa motility and male fertility. J Androl 27:816–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E, Talbot WS, Rasband MN (2011) Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci USA 108:8009–8014

    Article  CAS  PubMed  Google Scholar 

  • Tatosyan AG, Mizenina OA (2000) Kinases of the Src family: structure and functions. Biochemistry (Mosc) 65:49–58

    CAS  Google Scholar 

  • Terada N, Fujii Y, Ueda H, Ohno S (1997) An immunocytochemical study of changes in the human erythrocyte membrane skeleton produced by stretching examined by the quick-freezing and deep-etching method. J Anat 190:397–404

    Article  PubMed  Google Scholar 

  • Terada N, Fujii Y, Kato Y, Ueda H, Baba T, Ohno S (1998a) Scanning electron microscopic study of erythrocyte shapes artificially jetted through tubes at different pressures by ‘in vitro cryotechnique for erythrocytes’. J Electron Microsc 47:489–493

    Article  CAS  Google Scholar 

  • Terada N, Kato Y, Fuji Y, Ueda H, Baba T, Ohno S (1998b) Scanning electron microscopic study of flowing erythrocytes in hepatic sinusoids as revealed by ‘in vivo cryotechnique’. J Electron Microsc 47:67–72

    Article  CAS  Google Scholar 

  • Terada N, Ohno N, Saitoh S, Saitoh Y, Komada M, Kubota H, Ohno S (2010) Involvement of a membrane skeletal protein, 4.1G, for Sertoli/germ cell interaction. Reproduction 139:883–892

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Saitoh Y, Ohno N, Komada M, Saitoh S, Peles E, Ohno S (2012a) Essential function of protein 4.1G in targeting of membrane protein palmitoylated 6 into Schmidt-Lanterman incisures in myelinated nerves. Mol Cell Biol 32:199–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terada N, Saitoh Y, Saitoh S, Ohno N, Fujishita K, Koizumi S, Ohno S (2012b) Visualization of ATP with luciferin-luciferase reaction in mouse skeletal muscles using an “in vivo cryotechnique”. Microsc Microanal 18:1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Saitoh Y, Ohno N, Komada M, Yamauchi J, Ohno S (2013) Involvement of Src in the membrane skeletal complex, MPP6-4.1G, in Schmidt-Lanterman incisures of mouse myelinated nerve fibers in PNS. Histochem Cell Biol 140:213–222

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Andrews SB, Wong A, O’Connell M, Griffin JW (1989) Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol 18:47–60

    Article  CAS  PubMed  Google Scholar 

  • Tricaud N, Perrin-Tricaud C, Bruses JL, Rutishauser U (2005) Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25:3259–3269

    Article  CAS  PubMed  Google Scholar 

  • Tseng TC, Marfatia SM, Bryant PJ, Pack S, Zhuang Z, O’Brien JE, Lin L, Hanada T, Chishti AH (2001) VAM-1: a new member of the MAGUK family binds to human Veli-1 through a conserved domain. Biochim Biophys Acta 1518:249–259

    Article  CAS  PubMed  Google Scholar 

  • van der Weyden L, Arends MJ, Chausiaux OE, Ellis PJ, Lange UC, Surani MA, Affara N, Murakami Y, Adams DJ, Bradley A (2006) Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. Mol Cell Biol 26:3595–3609

    Article  PubMed Central  PubMed  Google Scholar 

  • Verhey KJ, Rapoport TA (2001) Kinesin carries the signal. Trends Biochem Sci 26:545–550

    Article  CAS  PubMed  Google Scholar 

  • Wakayama T, Ohashi K, Mizuno K, Iseki S (2001) Cloning and characterization of a novel mouse immunoglobulin superfamily gene expressed in early spermatogenic cells. Mol Reprod Dev 60:158–164

    Article  CAS  PubMed  Google Scholar 

  • Walensky LD, Gascard P, Fields ME, Blackshaw S, Conboy JG, Mohandas N, Snyder SH (1998) The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1. J Cell Biol 141:143–153

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen XW, Margolis B (2007) PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. Mol Biol Cell 18:874–885

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu HM, Gutmann DH (1998) Merlin differentially associates with the microtubule and actin cytoskeleton. J Neurosci Res 51:403–415

    Article  CAS  PubMed  Google Scholar 

  • Yamada D, Yoshida M, Williams YN, Fukami T, Kikuchi S, Masuda M, Maruyama T, Ohta T, Nakae D, Maekawa A, Kitamura T, Murakami Y (2006) Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1/IGSF4, an immunoglobulin superfamily cell adhesion molecule. Mol Cell Biol 26:3610–3624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada KH, Hanada T, Chishti AH (2007) The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46:10039–10045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang S, Guo X, Debnath G, Mohandas N, An X (2009) Protein 4.1R links E-cadherin/beta-catenin complex to the cytoskeleton through its direct interaction with beta-catenin and modulates adherens junction integrity. Biochim Biophys Acta 1788:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Young P, Boussadia O, Berger P, Leone DP, Charnay P, Kemler R, Suter U (2002) E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol Cell Neurosci 21:341–351

    Article  CAS  PubMed  Google Scholar 

  • Zhao YL, Takagawa K, Oya T, Yang HF, Gao ZY, Kawaguchi M, Ishii Y, Sasaoka T, Owada K, Furuta I, Sasahara M (2003) Active Src expression is induced after rat peripheral nerve injury. Glia 42:184–193

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Terada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Terada, N., Saitoh, Y., Ohno, N., Ohno, S. (2014). Membrane Skeleton in Schmidt–Lanterman Incisure in Schwann Cells of the Peripheral Nervous System. In: Sango, K., Yamauchi, J. (eds) Schwann Cell Development and Pathology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54764-8_3

Download citation

Publish with us

Policies and ethics