Skip to main content

Spontaneously Immortalized Adult Rodent Schwann Cells as Valuable Tools for the Study of Peripheral Nerve Degeneration and Regeneration

  • Chapter
  • First Online:
Schwann Cell Development and Pathology

Abstract

We have established spontaneously immortalized Schwann cell lines from normal adult mice and rats, as well as murine disease models. One of the normal mouse cell lines, IMS32, possesses some biological properties of mature Schwann cells and high proliferative activities. The IMS32 cells have been utilized to investigate the action mechanisms of various molecules involved in peripheral nerve regeneration [e.g., ciliary neurotrophic factor (CNTF), sonic hedgehog, and galectin-1], and the pathogenesis of diabetic neuropathy, particularly the polyol pathway hyperactivity. The cell lines derived from murine disease models (e.g., lysosomal storage diseases, Charcot-Marie-Tooth disease, and neurofibromatosis) retain genomic and biochemical abnormalities, sufficiently representing the pathological features of the mutant mice. A normal rat cell line, IFRS1, retains the characteristic features of mature Schwann cells and the fundamental ability to myelinate axons in coculture with adult rat DRG neurons and PC12 cells. These Schwann cell lines can be valuable tools for exploring neuron–Schwann cell interactions, the pathobiology of axonal degeneration and regeneration in the peripheral nervous system, and novel therapeutic approaches against neurological disorders in patients with relevant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Namikawa K, Honma M, Iwata T, Matsuoka I, Watabe K, Kiyama H (2001) Inhibition of Ras extracellular-signal-regulated kinase (ERK) mediated signaling promotes ciliary neurotrophic factor (CNTF) expression in Schwann cells. J Neurochem 77(2):700–703

    Article  CAS  PubMed  Google Scholar 

  • Adler R, Landa KB, Manthorpe M, Varon S (1979) Cholinergic neuronotrophic factors: intraocular distribution of soluble trophic activity for ciliary neurons. Science 204(4400):1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3(5):383–394

    Article  CAS  PubMed  Google Scholar 

  • Aragno M, Mastrocola R, Medana C, Restivo F, Catalano MG, Pons N, Danni O, Boccuzzi G (2005) Up-regulation of advanced glycated products receptors in the brain of diabetic rats is prevented by antioxidant treatment. Endocrinology 146(12):5561–5567

    Article  CAS  PubMed  Google Scholar 

  • Arroyo EJ, Scherer SS (2007) The molecular organization of myelinating Schwann cells. In: Armati P (ed) The biology of Schwann cells. Cambridge University Press, New York, pp 37–54

    Chapter  Google Scholar 

  • Banerjee TK (2004) Fabry disease with special reference to neurological manifestations. Eur Rev Med Pharmacol Sci 8:275–281

    CAS  PubMed  Google Scholar 

  • Bolin LM, Iismaa TP, Shooter EM (1992) Isolation of activated adult Schwann cells and a spontaneously immortal Schwann cell clone. J Neurosci Res 33(2):231–238

    Article  CAS  PubMed  Google Scholar 

  • Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8(9):1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Brockes JP, Fryxell KJ, Lemke GE (1981) Studies on cultured Schwann cells: the induction of myelin synthesis, and the control of their proliferation by a new growth factor. J Exp Biol 95:215–230

    CAS  PubMed  Google Scholar 

  • Bunge RP (1993) Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol 3(5):805–809

    Article  CAS  PubMed  Google Scholar 

  • Calcutt NA, Allendoerfer KL, Mizisin AP, Middlemas A, Freshwater JD, Burgers M, Ranciato R, Delcroix JD, Taylor FR, Shapiro R, Strauch K, Dudek H, Engber TM, Galdes A, Rubin LL, Tomlinson DR (2003) Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy. J Clin Invest 111(4):507–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16(11):137R–157R

    Article  CAS  PubMed  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA (1997) Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277(5323):228–231

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Horie H, Hikawa N, Takenaka T (1993) Isolation and age-related characterization of mouse Schwann cells from dorsal root ganglion explants in type I collagen gels. J Neurosci Res 35(2):183–187

    Article  CAS  PubMed  Google Scholar 

  • Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104(4):593–604

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN, Barondes SH (1990) Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol 110(5):1681–1691

    Article  CAS  PubMed  Google Scholar 

  • De Vries GH, Boullerne AI (2010) Glial cell lines: an overview. Neurochem Res 35(12):1978–2000

    Article  PubMed  Google Scholar 

  • Dyck PJ, Giannini C (1996) Pathologic alterations in the diabetic neuropathies of humans: a review. J Neuropathol Exp Neurol 55(12):1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Eccleston PA, Mirsky R, Jessen KR (1991) Spontaneous immortalisation of Schwann cells in culture: short-term cultured Schwann cells secrete growth inhibitory activity. Development (Camb) 112(1):33–42

    CAS  Google Scholar 

  • Eckersley L (2002) Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol 50:293–321

    Article  CAS  PubMed  Google Scholar 

  • Fleming CE, Mar FM, Franquinho F, Sousa MM (2009) Transthyretin: an enhancer of nerve regeneration. Int Rev Neurobiol 87:337–346

    Article  CAS  PubMed  Google Scholar 

  • Friedman B, Scherer SS, Rudge JS, Helgren M, Morrisey D, McClain J, Wang D, Wiegand SJ, Furth ME, Lindsay RM, Ip NY (1992) Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron 9(2):295–305

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga M, Miyata S, Liu BF, Miyazaki H, Hirota Y, Higo S, Hamada Y, Ueyama S, Kasuga M (2004) Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells. Biochem Biophys Res Commun 320(3):689–695

    Article  CAS  PubMed  Google Scholar 

  • Giese KP, Martini R, Lemke G, Soriano P, Schachner M (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71(4):565–576

    Article  CAS  PubMed  Google Scholar 

  • Gingras M, Beaulieu MM, Gagnon V, Durham HD, Berthod F (2008) In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia 56:354–364

    Article  PubMed  Google Scholar 

  • Gustavsson P, Linsmeier CE, Leffler H, Kanje M (2007) Galectin-3 inhibits Schwann cell proliferation in cultured sciatic nerve. Neuroreport 18(7):669–673

    Article  CAS  PubMed  Google Scholar 

  • Haastert K, Mauritz C, Chaturvedi S, Grothe C (2007) Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat Protoc 2(1):99–104

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Ishii K, Nakamura Y, Watabe K, Kohsaka S, Akazawa C (2008) Neuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury. J Neurochem 107(4):918–927

    CAS  PubMed  Google Scholar 

  • Horie H, Inagaki Y, Sohma Y, Nozawa R, Okawa K, Hasegawa M, Muramatsu N, Kawano H, Horie M, Koyama H, Sakai I, Takeshita K, Kowada Y, Takano M, Kadoya T (1999) Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J Neurosci 19(22):9964–9974

    CAS  PubMed  Google Scholar 

  • Horie H, Kadoya T, Hikawa N, Sango K, Inoue H, Takeshita K, Asawa R, Hiroi T, Sato M, Yoshioka T, Ishikawa Y (2004) Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 24(8):1873–1880

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Wiese S, Funk N, Chittka A, Rossoll W, Bömmel H, Watabe K, Wegner M, Sendtner M (2006) Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells. Proc Natl Acad Sci USA 103(20):7871–7876

    Article  CAS  PubMed  Google Scholar 

  • Kawashima I, Watabe K, Tajima Y, Fukushige T, Kanzaki T, Kanekura T, Sugawara K, Ohyanagi N, Suzuki T, Togawa T, Sakuraba H (2007) Establishment of immortalized Schwann cells from Fabry mice and their low uptake of recombinant alpha-galactosidase. J Hum Genet 52(12):1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Kieseier BC, Hu W, Hartung H-P (2007) Schwann cells as immunomodulatory cells. In: Armati P (ed) The biology of Schwann cells. Cambridge University Press, New York, pp 118–125

    Chapter  Google Scholar 

  • Kleitman N, Wood PM, Bunge RP (1998) Tissue culture methods for the study of myelination. In: Banker G, Goslin K (eds) Culturing nerve cells, 2nd edn. MIT Press, Cambridge, pp 545–594

    Google Scholar 

  • Kobayashi T, Yamanaka T, Jacobs JM, Teixeira F, Suzuki K (1980) The Twitcher mouse: an enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease). Brain Res 202(2):479–483

    Article  CAS  PubMed  Google Scholar 

  • Lehmann HC, Höke A (2010) Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets 9(6):801–806

    Article  CAS  PubMed  Google Scholar 

  • Lehmann HC, Köhne A, Bernal F, Jangouk P, Meyer Zu Hörste G, Dehmel T, Hartung HP, Previtali SC, Kieseier BC (2009) Matrix metalloproteinase-2 is involved in myelination of dorsal root ganglia neurons. Glia 57:479–489

    Article  PubMed  Google Scholar 

  • Li R (1998) Culture methods for selective growth of normal rat and human Schwann cells. Methods Cell Biol 57:167–186

    Article  CAS  PubMed  Google Scholar 

  • Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ (1997) Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene. Science 277(5323):232–235

    Article  CAS  PubMed  Google Scholar 

  • Magnaghi V, Procacci P, Tata AM (2009) Novel pharmacological approaches to Schwann cells as neuroprotective agents for peripheral nerve regeneration. Int Rev Neurobiol 87:295–315

    Article  CAS  PubMed  Google Scholar 

  • Mathon NF, Malcolm DS, Harrisingh MC, Cheng L, Lloyd AC (2001) Lack of replicative senescence in normal rodent glia. Science 291(5505):872–875

    Article  CAS  PubMed  Google Scholar 

  • Mirsky R, Jessen KR (2007) Early events in Schwann cell development. In: Armati P (ed) The biology of Schwann cells. Cambridge University Press, New York, pp 13–36

    Chapter  Google Scholar 

  • Miyawaki S, Mitsuoka S, Sakiyama T, Kitagawa T (1982) Sphingomyelinosis, a new mutation in the mouse: a model of Niemann–Pick disease in humans. J Hered 73(4):257–263

    CAS  PubMed  Google Scholar 

  • Mizisin AP, Li L, Perello M, Freshwater JD, Kalichman MW, Roux L, Calcutt NA (1996) Polyol pathway and osmoregulation in JS1 Schwann cells grown in hyperglycemic and hyperosmotic conditions. Am J Physiol 270(1 pt 2):F90–F97

    CAS  PubMed  Google Scholar 

  • Muir D, Varon S, Manthorpe M (1990) Schwann cell proliferation in vitro is under negative autocrine control. J Cell Biol 111(6 pt 1):2663–2671

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Ohsawa Y, Zhenghua L, Yamamura K, Sunada Y (2010) The transthyretin gene is expressed in Schwann cells of peripheral nerves. Brain Res 1348:222–225

    Article  CAS  PubMed  Google Scholar 

  • Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, Jadot M, Lobel P (2000) Identification of HE1 as the second gene of Niemann–Pick C disease. Science 290(5500):2298–2301

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9(3):343–353

    Article  CAS  PubMed  Google Scholar 

  • Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, Nakamura K, Tanaka S (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci 24(30):6724–6732

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa M, Kotani M, Tajima Y, Tsuji D, Ishibashi Y, Kuroki A, Itoh K, Watabe K, Sango K, Yamanaka S, Sakuraba H (2005) Establishment of immortalized Schwann cells from Sandhoff mice and corrective effect of recombinant human beta-hexosaminidase A on the accumulated GM2 ganglioside. J Hum Genet 50(9):460–467

    Article  CAS  PubMed  Google Scholar 

  • Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, Cardarelli CO, Sugimoto Y, Pastan I, Gottesman MM, Brady RO, Kulkarni AB (1997) Alpha-galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA 94(6):2540–2544

    Article  CAS  PubMed  Google Scholar 

  • Ota K, Nakamura J, Li W, Kozakae M, Watarai A, Nakamura N, Yasuda Y, Nakashima E, Naruse K, Watabe K, Kato K, Oiso Y, Hamada Y (2007) Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells. Biochem Biophys Res Commun 357(1):270–275

    Article  CAS  PubMed  Google Scholar 

  • Padilla A, Descorbeth M, Almeyda AL, Payne K, De Leon M (2011) Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res 1370:64–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paratcha G, Ledda F, Ibáñez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113(7):867–879

    Article  CAS  PubMed  Google Scholar 

  • Peden KW, Charles C, Sanders L, Tennekoon GI (1989) Isolation of rat Schwann cell lines: use of SV40 T antigen gene regulated by synthetic metallothionein promoters. Exp Cell Res 185(1):60–72

    Article  CAS  PubMed  Google Scholar 

  • Pentchev PG, Gal AE, Booth AD, Omodeo-Sale F, Fouks J, Neumeyer BA, Quirk JM, Dawson G, Brady RO (1980) A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta 619(3):669–679

    Article  CAS  PubMed  Google Scholar 

  • Plachta N, Annaheim C, Bissière S, Lin S, RĂĽegg M, Hoving S, MĂĽller D, Poirier F, Bibel M, Barde YA (2007) Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat Neurosci 10(6):712–719

    Article  CAS  PubMed  Google Scholar 

  • Porter S, Glaser L, Bunge RP (1987) Release of autocrine growth factor by primary and immortalized Schwann cells. Proc Natl Acad Sci USA 84(21):7768–7772

    Article  CAS  PubMed  Google Scholar 

  • Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Cordone S, Gradini R, Barsotti P, Liu FT, Di Mario U, Pugliese G (2000) Role of galectin-3 as a receptor for advanced glycosylation end products. Kidney Int Suppl 77:S31–S39

    Article  CAS  PubMed  Google Scholar 

  • Sandhoff K (2001) The GM2 gangliosidoses and the elucidation of the β-hexosaminidase system. In: Desnick RJ, Kaback MM (eds) Tay–Sachs disease, vol 44, Advances in genetics. Academic, San Diego, pp 67–91

    Google Scholar 

  • Sango K, Verdes JM, Hikawa N, Horie H, Tanaka S, Inoue S, Sotelo JR, Takenaka T (1994) Nerve growth factor (NGF) restores depletions of calcitonin gene-related peptide and substance P in sensory neurons from diabetic mice in vitro. J Neurol Sci 126(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Sango K, Yamanaka S, Hoffmann A, Okuda Y, Grinberg A, Westphal H, McDonald MP, Crawley JN, Sandhoff K, Suzuki K, Proia RL (1995) Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11(2):170–176

    Article  CAS  PubMed  Google Scholar 

  • Sango K, Tokashiki A, Ajiki K, Horie M, Kawano H, Watabe K, Horie H, Kadoya T (2004) Synthesis, localization and externalization of galectin-1 in mature dorsal root ganglion neurons and Schwann cells. Eur J Neurosci 19(1):55–64

    Article  PubMed  Google Scholar 

  • Sango K, Saito H, Takano M, Tokashiki A, Inoue S, Horie H (2006a) Cultured adult animal neurons and Schwann cells give us new insights into diabetic neuropathy. Curr Diabetes Rev 2(2):169–183

    Article  CAS  PubMed  Google Scholar 

  • Sango K, Suzuki T, Yanagisawa H, Takaku S, Hirooka H, Tamura M, Watabe K (2006b) High glucose-induced activation of the polyol pathway and changes of gene expression profiles in immortalized adult mouse Schwann cells IMS32. J Neurochem 98(2):446–458

    Article  CAS  PubMed  Google Scholar 

  • Sango K, Yanagisawa H, Komuta Y, Si Y, Kawano H (2008a) Neuroprotective properties of ciliary neurotrophic factor for cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 130(4):669–679

    Article  CAS  PubMed  Google Scholar 

  • Sango K, Yanagisawa H, Kato K, Kato N, Hirooka H, Watabe K (2008b) Differential effects of high glucose and methylglyoxal on viability and polyol metabolism in immortalized adult mouse Schwann cells. Open Diabetes J 1:1–11

    Article  CAS  Google Scholar 

  • Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K (2011a) Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 89(6):898–908

    Article  CAS  PubMed  Google Scholar 

  • Sango K, Yanagisawa H, Takaku S, Kawakami E, Watabe K (2011b) Immortalized adult rodent Schwann cells as in vitro models to study diabetic neuropathy. Exp Diabetes Res 2011:374943

    Article  PubMed Central  PubMed  Google Scholar 

  • Sango K, Yanagisawa H, Watabe K, Horie H, Kadoya T (2012a) Galectin-1 as a multifunctional molecule in the peripheral nervous system after injury. In: Rayegani SM (ed) Basic principles of peripheral nerve disorders. InTech Doo, Rijeka, pp 31–46 http://www.intechopen.com/books/basic-principles-of-peripheral-nerve-disorders/galectin-1-as-a-multifunctional-molecule-in-the-peripheral-nervous-system-after-injury

    Google Scholar 

  • Sango K, Kawakami E, Yanagisawa H, Takaku S, Tsukamoto M, Utsunomiya K, Watabe K (2012b) Myelination in coculture of established neuronal and Schwann cell lines. Histochem Cell Biol 137(6):829–839

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Hirabayashi J, Manya H, Kasai K, Endo T (2004) Galectin-1 induces astrocyte differentiation, which leads to production of brain-derived neurotrophic factor. Glycobiology 14(4):357–363

    Article  CAS  PubMed  Google Scholar 

  • Sendtner M, Stockli KA, Thoenen H (1992) Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell Biol 118(1):139–148

    Article  CAS  PubMed  Google Scholar 

  • Shen JS, Watabe K, Meng XL, Ida H, Ohashi T, Eto Y (2002) Establishment and characterization of spontaneously immortalized Schwann cells from murine model of globoid cell leukodystrophy (twitcher). J Neurosci Res 68(5):588–594

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Fu DT, Chan YS, Leung S, Chung SS, Chung SK (2003) Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 23(4):638–647

    Article  CAS  PubMed  Google Scholar 

  • Sousa MM, Saraiva MJ (2003) Neurodegeneration in familial amyloid polyneuropathy: from pathology to molecular signaling. Prog Neurobiol 71(5):385–400

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Yasujima M, Yagihashi S (2008) Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des 14(10):953–961

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Vanier MT, Suzuki K (1999) Lysosomal disorders. In: Popko B (ed) Mouse models in the study of genetic neurological disorders, vol 9, Advances in neurochemistry. Kluwer, New York, pp 245–283

    Chapter  Google Scholar 

  • Suzuki J, Akahane K, Nakamura J, Naruse K, Kamiya H, Himeno T, Nakamura N, Shibata T, Kondo M, Nagasaki H, Fujiya A, Oiso Y, Hamada Y (2011) Palmitate induces apoptosis in Schwann cells via both ceramide-dependent and independent pathways. Neuroscience 176:188–198

    Article  CAS  PubMed  Google Scholar 

  • Takaku S, Yanagisawa H, Watabe K, Horie H, Kadoya T, Sakumi K, Nakabeppu Y, Poirier F, Sango K (2013) GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. Neurochem Int 62(3):330–339

    Article  CAS  PubMed  Google Scholar 

  • Toda K, Small JA, Goda S, Quarles RH (1994) Biochemical and cellular properties of three immortalized Schwann cell lines expressing different levels of the myelin-associated glycoprotein. J Neurochem 63(5):1646–1657

    Article  CAS  PubMed  Google Scholar 

  • Tosaki T, Kamiya H, Yasuda Y, Naruse K, Kato K, Kozakae M, Nakamura N, Shibata T, Hamada Y, Nakashima E, Oiso Y, Nakamura J (2008) Reduced NGF secretion by Schwann cells under the high glucose condition decreases neurite outgrowth of DRG neurons. Exp Neurol 213(2):381–387

    Article  CAS  PubMed  Google Scholar 

  • Traiffort E, Angot E, Ruat M (2010) Sonic Hedgehog signaling in the mammalian brain. J Neurochem 113(3):576–590

    Article  CAS  PubMed  Google Scholar 

  • VerdĂş E, Ceballos D, Vilches JJ, Navarro X (2000) Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 5(4):191–208

    Article  PubMed  Google Scholar 

  • Watabe K, Yamada M, Kawamura T, Kim SU (1990) Transfection and stable transformation of adult mouse Schwann cells with SV-40 large T antigen gene. J Neuropathol Exp Neurol 49(5):455–467

    Article  CAS  PubMed  Google Scholar 

  • Watabe K, Fukuda T, Tanaka J, Toyohara K, Sakai O (1994) Mitogenic effects of platelet-derived growth factor, fibroblast growth factor, transforming growth factor-beta, and heparin-binding serum factor for adult mouse Schwann cells. J Neurosci Res 39(5):525–534

    Article  CAS  PubMed  Google Scholar 

  • Watabe K, Fukuda T, Tanaka J, Honda H, Toyohara K, Sakai O (1995) Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. J Neurosci Res 41(2):279–290

    Article  CAS  PubMed  Google Scholar 

  • Watabe K, Ida H, Uehara K, Oyanagi K, Sakamoto T, Tanaka J, Garver WS, Miyawaki S, Ohno K, Eto Y (2001) Establishment and characterization of immortalized Schwann cells from murine model of Niemann–Pick disease type C (spm/spm). J Peripher Nerv Syst 6(2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Watabe K, Sakamoto T, Kawazoe Y, Michikawa M, Miyamoto K, Yamamura T, Saya H, Araki N (2003) Tissue culture methods to study neurological disorders: establishment of immortalized Schwann cells from murine disease models. Neuropathology 23(1):68–78

    Article  PubMed  Google Scholar 

  • Yamauchi J, Miyamoto Y, Chan JR, Tanoue A (2008) ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. J Cell Biol 181(2):351–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ma Z, Smith GM, Wen X, Pressman Y, Wood PM, Xu XM (2009) GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Glia 57:1178–1191

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work of our laboratory reported in this review was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (grant number: 22500324), the Umehara Fund of the Yokohama Foundation for the Advancement of Medical Science, Japan, and grants from the Sanwa Kagaku Kenkyusho, Suzuken Memorial Foundation, and the Japan Diabetes Foundation. We thank Drs. Koichi Kato, Yasushi Kanazawa, Shizuka Takaku, Hiroko Yanagisawa, and Miwa Sango-Hirade for helpful suggestions; Emiko Kawakami, Kentaro Endo, and the late Kyoko Ajiki for technical assistance with our studies; Enago (www.enago.jp) for the English language review; and John Wiley and Sons for permission to reproduce the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Sango .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sango, K., Tsukamoto, M., Utsunomiya, K., Watabe, K. (2014). Spontaneously Immortalized Adult Rodent Schwann Cells as Valuable Tools for the Study of Peripheral Nerve Degeneration and Regeneration. In: Sango, K., Yamauchi, J. (eds) Schwann Cell Development and Pathology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54764-8_10

Download citation

Publish with us

Policies and ethics