Skip to main content

Regulation of Axial Stem Cells Deriving Neural and Mesodermal Tissues During Posterior Axial Elongation

  • Chapter
  • First Online:
New Principles in Developmental Processes
  • 1033 Accesses

Abstract

The vertebrate body axis elongates by extending the posterior end and generating a variety of somatic cells of the trunk (posterior) tissues. Recent studies have demonstrated that the posterior neural plate and posterior paraxial mesoderm are generated from bipotential stem cells, the axial stem cells, which reside in the caudal lateral epiblast of gastrulating embryos. The fate of axial stem cells, neural or mesodermal lineages, depends on the counteracting transcription factors for respective tissues, Sox2 and Tbx6. Tbx6 represses the Sox2 expression in the axial stem cell-derived mesodermal precursors. In the absence of the Tbx6 gene, Sox2 is ectopically expressed in the mesodermal precursors, causing ectopic neural tube development at the expense of paraxial mesoderm. While producing two somatic lineages, axial stem cells are proliferatively maintained by a process that depends on the Wnt-Brachyury regulatory loop; mutant embryos lacking Wnt3a or Brachyury activity prematurely terminate axis elongation as the result of stem cell exhaustion. Although the axial stem cells serve as a cellular source for the neural and paraxial mesoderm tissues of the trunk, at the craniocervical level these tissues are presumably produced via completely different mechanisms. In this chapter, experimental evidence for axial stem cells and their regulation is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MJ, Naiche LA, Wilson CP, Elder C, Swing DA, Lewandoski M (2013) TCreERT2, a transgenic mouse line for temporal control of Cre-mediated recombination in lineages emerging from the primitive streak or tail bud. PLoS ONE 8(4):e62479. doi:10.1371/journal.pone.0062479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa C, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature (Lond) 448(7150):191–195. doi:10.1038/nature05950

    Article  CAS  Google Scholar 

  • Brown J, Storey K (2000) A region of the vertebrate neural plate in which neighbouring cells can adopt neural or epidermal fates. Curr Biol 10(14):869–872

    Article  CAS  PubMed  Google Scholar 

  • Cambray N, Wilson V (2007) Two distinct sources for a population of maturing axial progenitors. Development (Camb) 134(15):2829–2840

    Article  CAS  Google Scholar 

  • Chapman D, Papaioannou V (1998) Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature (Lond) 391(6668):695–697

    Article  CAS  Google Scholar 

  • Chapman D, Agulnik I, Hancock S, Silver L, Papaioannou V (1996) Tbx6, a mouse T-box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol 180(2):534–542

    Article  CAS  PubMed  Google Scholar 

  • Chesley P (1935) Development of the short-tailed mutant in the house mouse. J Exp Zool 70(3):429–459

    Article  Google Scholar 

  • Delfino-Machín M, Lunn J, Breitkreuz D, Akai J, Storey K (2005) Specification and maintenance of the spinal cord stem zone. Development (Camb) 132(19):4273–4283

    Article  Google Scholar 

  • Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper SA (1996) Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 10(3):313–324

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Osorno R, Tsakiridis A, Wilson V (2012) In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep 2(6):1571–1578. doi:10.1016/j.celrep.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  • Iwafuchi-Doi M, Yoshida Y, Onichtchouk D, Leichsenring M, Driever W, Takemoto T, Uchikawa M, Kamachi Y, Kondoh H (2011) The Pou5f1/Pou3f-dependent but SoxB-independent regulation of conserved enhancer N2 initiates Sox2 expression during epiblast to neural plate stages in vertebrates. Dev Biol 352(2):354–366. doi:10.1016/j.ydbio.2010.12.027, pii: S0012-1606(10)01268-6

    Article  CAS  PubMed  Google Scholar 

  • Kamachi Y, Iwafuchi M, Okuda Y, Takemoto T, Uchikawa M, Kondoh H (2009) Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes. Proc Jpn Acad Ser B Phys Biol Sci 85(2):55–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondoh H, Takemoto T (2012) Axial stem cells deriving both posterior neural and mesodermal tissues during gastrulation. Curr Opin Genet Dev 22(4):374–380. doi:10.1016/j.gde.2012.03.006, pii: S0959-437X(12)00044-5

    Article  CAS  PubMed  Google Scholar 

  • Martin BL, Kimelman D (2012) Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell 22(1):223–232. doi:10.1016/j.devcel.2011.11.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olivera-Martinez I, Harada H, Halley PA, Storey KG (2012) Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol 10(10):e1001415. doi:10.1371/journal.pbio.1001415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osorno R, Tsakiridis A, Wong F, Cambray N, Economou C, Wilkie R, Blin G, Scotting PJ, Chambers I, Wilson V (2012) The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development (Camb) 139(13):2288–2298. doi:10.1242/dev.078071

    Article  CAS  Google Scholar 

  • Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M (2005) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development (Camb) 132(17):3859–3871. doi:10.1242/dev.01945

    Article  CAS  Google Scholar 

  • Takada S, Stark K, Shea M, Vassileva G, McMahon J, McMahon A (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8(2):174–189

    Article  CAS  PubMed  Google Scholar 

  • Takemoto T, Uchikawa M, Kamachi Y, Kondoh H (2006) Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development (Camb) 133(2):297–306

    Article  CAS  Google Scholar 

  • Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE, Kondoh H (2011) Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature (Lond) 470(7334):394–398. doi:10.1038/nature09729, pii: nature09729

    Article  CAS  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature (Lond) 448(7150):196–199. doi:10.1038/nature05972

    Article  CAS  Google Scholar 

  • Tzouanacou E, Wegener A, Wymeersch F, Wilson V, Nicolas J (2009) Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17(3):365–376

    Article  CAS  PubMed  Google Scholar 

  • Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H (2003) Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 4(4):509–519

    Article  CAS  PubMed  Google Scholar 

  • Uchikawa M, Yoshida M, Iwafuchi-Doi M, Matsuda K, Ishida Y, Takemoto T, Kondoh H (2011) B1 and B2 Sox gene expression during neural plate development in chicken and mouse embryos: universal versus species-dependent features. Dev Growth Differ 53(6):761–771. doi:10.1111/j.1440-169X.2011.01286.x

    Article  CAS  PubMed  Google Scholar 

  • Wilson V, Olivera-Martinez I, Storey K (2009) Stem cells, signals and vertebrate body axis extension. Development (Camb) 136(10):1591–1604

    Article  CAS  Google Scholar 

  • Wood HB, Episkopou V (1999) Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86(1–2):197–201

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Takada S, Yoshikawa Y, Wu N, McMahon A (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13:3185–3190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa Y, Fujimori T, McMahon A, Takada S (1997) Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Dev Biol 183(2):234–242

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Takemoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takemoto, T. (2014). Regulation of Axial Stem Cells Deriving Neural and Mesodermal Tissues During Posterior Axial Elongation. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_7

Download citation

Publish with us

Policies and ethics