Skip to main content

Cell Competition: The Struggle for Existence in Multicellular Communities

  • Chapter
  • First Online:
New Principles in Developmental Processes

Abstract

How the size and shape of organs are determined is one of the most mysterious questions in developmental biology. Organ size and shape are controlled by tissue growth, which is strongly influenced by local homeostatic cell–cell interactions. Studies during the past several years have shown that cells in multicellular communities compete with each other for their existence; cells with higher fitness (“winners”) survive and eliminate cells with lower fitness (“losers”) by inducing cell death. Accumulating evidence, obtained mainly in Drosophila, has revealed that this cellular natural selection, called “cell competition,” could have an important role in organ size and shape control in normal development as well as in some pathophysiological conditions such as stem cell regulation and cancer development. In this chapter, we discuss recent insights in cell competition. Elucidation of the mechanism by which cell competition is controlled could create a new dimension for understanding the basic principle of multicellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbouzova NI, Zeidler MP (2006) JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development (Camb) 133(14):2605–2616

    Article  CAS  Google Scholar 

  • Baker NE (2011) Cell competition. Curr Biol 21(1):R11–R15

    Article  CAS  PubMed  Google Scholar 

  • Bilder D (2004) Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 18(16):1909–1925

    Article  CAS  PubMed  Google Scholar 

  • Bilder D, Perrimon N (2000) Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature (Lond) 403(6770):676–680

    Article  CAS  Google Scholar 

  • Bondar T, Medzhitov R (2010) p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6(4):309–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brumby AM, Richardson HE (2003) scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22(21):5769–5779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5(8):626–639

    Article  CAS  PubMed  Google Scholar 

  • Crick FH, Lawrence PA (1975) Compartments and polyclones in insect development. Science 189(4200):340–347

    Article  CAS  PubMed  Google Scholar 

  • de Beco S, Ziosi M, Johnston LA (2012) New frontiers in cell competition. Dev Dyn 241(5):831–841

    Article  PubMed Central  PubMed  Google Scholar 

  • de la Cova C, Abril M, Bellosta P et al (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117(1):107–116

    Article  PubMed  Google Scholar 

  • Dow LE, Brumby AM, Muratore R (2003) hScrib is a functional homologue of the Drosophila tumor suppressor Scribble. Oncogene 22(58):9225–9230

    Article  CAS  PubMed  Google Scholar 

  • Enomoto M, Igaki T (2011) Deciphering tumor-suppressor signaling in flies: genetic link between Scribble/Dlg/Lgl and the Hippo pathways. J Genet Genomics 38(10):461–470

    Article  CAS  PubMed  Google Scholar 

  • Enomoto M, Igaki T (2013) Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Rep 14(1):65–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fristrom D (1969) Cellular degeneration in the production of some mutant phenotypes in Drosophila melanogaster. Mol Gen Genet 103(4):363–379

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bellido A, Ripoll P, Morata G (1973) Developmental compartmentalization of the wing disk of Drosophila. Nat New Biol 245(147):251–253

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Cohen SM (2003) Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development (Camb) 130(26):6533–6543

    Article  CAS  Google Scholar 

  • Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyze site-specific recombination in Drosophila genome. Cell 59(3):499–509

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development (Camb) 138(1):9–22

    Article  CAS  Google Scholar 

  • Henriksson M, Lüscher B (1996) Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 68:109–182

    Article  CAS  PubMed  Google Scholar 

  • Hogan C, Dupre-Crochet S, Norman M et al (2009) Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol 11(4):460–467

    Article  CAS  PubMed  Google Scholar 

  • Igaki T, Pastor-Pareja JC, Aonuma H et al (2009) Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 16(3):458–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin Z, Kirilly D, Weng C et al (2008) Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell 2(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Johnston LA (2009) Competitive interactions between cells: death, growth and geography. Science 324(5935):1679–1682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston LA, Sanders AL (2003) Wingless promotes cell survival but constrains growth during Drosophila wing development. Nat Cell Biol 5(9):827–833

    Article  CAS  PubMed  Google Scholar 

  • Johnston LA, Prober DA, Edgar BA et al (1999) Drosophila myc regulates cellular growth during development. Cell 98(6):779–790

    Article  CAS  PubMed  Google Scholar 

  • Kajita M, Hogan C, Harris AR et al (2010) Interaction with surrounding normal epithelial cells influences signaling pathways and behavior of Src-transformed cells. J Cell Sci 123(Pt 2):171–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kongsuwan K, Yu Q, Vincent A et al (1985) A Drosophila minute gene encodes a ribosomal protein. Nature (Lond) 317(6037):555–558

    Article  CAS  Google Scholar 

  • Lambertsson A (1998) The minute genes in Drosophila and their molecular functions. Adv Genet 38:69–134

    Article  CAS  PubMed  Google Scholar 

  • Levayer R, Moreno E (2013) Mechanisms of cell competition: themes and variation. J Cell Biol 200(6):689–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Baker NE (2007) Engulfment is required for cell competition. Cell 129(6):1215–1225

    Article  CAS  PubMed  Google Scholar 

  • Lin H (2002) The stem-cell niche theory: lessons from flies. Nat Rev Genet 3(12):931–940

    Article  CAS  PubMed  Google Scholar 

  • Lolo FN, Casas-Tinto S, Moreno E (2012) Cell competition time line: winners kill losers, which are extruded and engulfed by hemocytes. Cell Rep 2(3):526–539

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12(1):23–38

    CAS  Google Scholar 

  • Martinek N, Zou R, Berg M et al (2002) Evolutionary conservation and association of SPARC with the basal lamina in Drosophila. Dev Genes Evol 212(3):124–133

    Article  CAS  PubMed  Google Scholar 

  • Morata G, Ripoll P (1975) Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev Biol 42(2):211–221

    Article  CAS  PubMed  Google Scholar 

  • Moreno E (2008) Is cell competition relevant to cancer? Nat Rev Cancer 8(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, Basler K (2004) dMyc transforms cells into super-competitors. Cell 117(1):117–129

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, Basler K, Morata G (2002) Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature (Lond) 416(6882):755–759

    Article  CAS  Google Scholar 

  • Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yokie, the Drosophila homolog of Yap. Dev Cell 19(4):507–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norman M, Wisniewska KA, Lawrenson K et al (2012) Loss of Scribble causes cell competition in mammalian cells. J Cell Sci 125(pt 1):59–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohsawa S, Sugimura K, Takino K et al (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20(3):315–328

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa S, Sato Y, Enomoto M et al (2012) Mitochondrial defect drives non-autonomous tumor progression through Hippo signaling in Drosophila. Nature (Lond) 490(7421):547–551

    Article  CAS  Google Scholar 

  • Oliver ER, Saunders TL, Tarle SA et al (2004) Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development (Camb) 131(16):3907–3920

    Article  CAS  Google Scholar 

  • Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302(5648):1227–1231

    Article  CAS  PubMed  Google Scholar 

  • Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Portela M, Casa-Tinto S, Rhiner C et al (2010) Drosophila SPARC is a self-protective signal expressed by loser cells during cell competition. Dev Cell 19(4):562–573

    Article  CAS  PubMed  Google Scholar 

  • Rhiner C, Lopez-Gay JM, Soldini D et al (2010) Flower forms an extracellular code that reveals the fitness of a cell to its neighbors in Drosophila. Dev Cell 18(6):985–998

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AB, Zoranovic T, Ayala-Camargo A et al (2012) Activated STAT regulates growth and induces competitive interactions independently of Myc, Yokie, Wingless and ribosome biogenesis. Development (Camb) 139(21):4051–4061

    Article  CAS  Google Scholar 

  • Schroeder MC, Chen CL, Gajewski K et al (2012) A non-cell-autonomous tumor suppressor role for Stat in eliminating oncogenic scribble cells. Oncogene. doi:10.1038/onc.2012.476

    PubMed Central  Google Scholar 

  • Serrano N, O’Farrell PH (1997) Limb morphogenesis: connections between patterning and growth. Curr Biol 7(3):R186–R195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson P (1976) Analysis of the compartments of the wing of Drosophila melanogaster mosaic for a temperature-sensitive mutation that reduces mitotic rate. Dev Biol 54(1):100–115

    Article  CAS  PubMed  Google Scholar 

  • Simpson P (1979) Parameters of cell competition in the compartments of wing disc of Drosophila. Dev Biol 69(1):182–193

    Article  CAS  PubMed  Google Scholar 

  • Simpson P, Morata G (1981) Differential mitotic rates and patterns of growth in compartments in Drosophila wing. Dev Biol 85(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Murphy C, Fristrom JW (1972) The recovery and preliminary characterization of X chromosome mutants affecting imaginal discs of Drosophila melanogaster. Dev Biol 27(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Stine RR, Matunis EL (2013) Stem cell competition: finding balance in the niche. Trends Cell Biol 23(8):357–364. doi:10.1016/j.tcb.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  • Tamori Y, Deng WM (2011) Cell competition and its implications for development and cancer. J Genet Genomics 38(10):483–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamori Y, Deng WM (2013) Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia. Dev Cell 25(4):350–363

    Article  CAS  PubMed  Google Scholar 

  • Tamori Y, Bialucha CU, Tian AG et al (2010) Involvement of Lgl and Mahjong/VprBP in cell competition. PLoS Biol 8(7):e1000422

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsukazaki T, Chiang TA, Davison AF et al (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95(6):779–791

    Article  CAS  PubMed  Google Scholar 

  • Tyler DM, Li W, Zhuo N et al (2007) Genes affecting cell competition in Drosophila. Genetics 175(2):643–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent JP, Kolahgar G, Gagliardi M et al (2011) Steep differences in wingless signaling trigger myc-independent competitive cell interactions. Dev Cell 21(2):366–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woods DF, Bryant PJ (1991) The disc-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66(3):451–464

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development (Camb) 117(4):1223–1237

    CAS  Google Scholar 

  • Yao CK, Lin YQ, Ly CV et al (2009) A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138(5):947–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu FX, Zhao B, Panupinthu N et al (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150(4):780–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao B, Li L, Wang L et al (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26(1):54–68

    Article  PubMed Central  PubMed  Google Scholar 

  • Ziosi M, Baena-Lopez LA, Garoria F et al (2010) dMyc functions downstream of Yokie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 6(9):e1001140

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsushi Igaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kunimasa, K., Ohsawa, S., Igaki, T. (2014). Cell Competition: The Struggle for Existence in Multicellular Communities. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_3

Download citation

Publish with us

Policies and ethics