Skip to main content

Limb Regeneration: Reconstitution of Complex Organs Using Specific Tissue Interactions

  • Chapter
  • First Online:
New Principles in Developmental Processes
  • 1035 Accesses

Abstract

Limb regeneration in amphibians has been investigated for a long time because we still have not found a way to regenerate our body parts. Urodele amphibians generally have the ability to regenerate most of their organs. Limb regeneration has been investigated as a representative phenomenon of their high regeneration ability. Limb amputation in urodele amphibians causes regeneration blastema formation. A regeneration blastema is composed of undifferentiated cells called blastema cells. This blastema induction mechanism is the issue that has been the focus of study for a long time. Nerve tissue is known to be key for successful blastema formation and limb regeneration. Despite the importance of the nerve tissue in limb regeneration, its molecular description is not well established. Recently, a brand-new experimental system called an accessory limb model (ALM) was reported that is designed to reveal minimum and necessary tissue interaction including nerves. In this chapter, necessary tissue interactions for blastema induction in the ALM and related molecular descriptions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thrombospondin-1 (TSP-1), the founding member of the thrombospondin family, is released by human platelets in response to thrombin.

  2. 2.

    Anterior gradient (AG): synonym is XAG2. AG is expressed in the cement gland of a Xenopus tadpole.

References

  • Agata K, Tanaka T, Kobayashi C, Kato K, Saitoh Y (2003) Intercalary regeneration in planarians. Dev Dyn 226(2):308–316. doi:10.1002/dvdy.10249

    Article  CAS  PubMed  Google Scholar 

  • Albert P, Boilly B, Courty J, Barritault D (1987) Stimulation in cell culture of mesenchymal cells of newt limb blastemas by EDGF I or II (basic or acidic FGF). Cell Differ 21(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Boilly B, Albert P (1988) Blastema cell proliferation in vitro: effects of limb amputation on the mitogenic activity of spinal cord extracts. Biol Cell 62(2):183–187

    Article  CAS  PubMed  Google Scholar 

  • Capdevila J, Izpisua Belmonte JC (2001) Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol 17:87–132. doi:10.1146/annurev.cellbio.17.1.87

    Article  CAS  PubMed  Google Scholar 

  • Carlson MR, Bryant SV, Gardiner DM (1998) Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs. J Exp Zool 282(6):715–723

    Article  CAS  PubMed  Google Scholar 

  • Christensen RN, Weinstein M, Tassava RA (2002) Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn 223(2):193–203. doi:10.1002/dvdy.10049

    Article  CAS  PubMed  Google Scholar 

  • Cohn MJ, Izpisua-Belmonte JC, Abud H, Heath JK, Tickle C (1995) Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80(5):739–746

    Article  CAS  PubMed  Google Scholar 

  • Cuervo R, Hernandez-Martinez R, Chimal-Monroy J, Merchant-Larios H, Covarrubias L (2012) Full regeneration of the tribasal Polypterus fin. Proc Natl Acad Sci USA 109(10):3838–3843. doi:10.1073/pnas.1006619109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dungan KM, Wei TY, Nace JD, Poulin ML, Chiu IM, Lang JC, Tassava RA (2002) Expression and biological effect of urodele fibroblast growth factor 1: relationship to limb regeneration. J Exp Zool 292(6):540–554. doi:10.1002/jez.10077

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270(1):135–145. doi:10.1016/j.ydbio.2004.02.016

    Article  CAS  PubMed  Google Scholar 

  • Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (2011) Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350(2):301–310. doi:10.1016/j.ydbio.2010.11.035

    Google Scholar 

  • Gardiner DM, Muneoka K, Bryant SV (1986) The migration of dermal cells during blastema formation in axolotls. Dev Biol 118(2):488–493

    Article  CAS  PubMed  Google Scholar 

  • Gardiner DM, Endo T, Bryant SV (2002) The molecular basis of amphibian limb regeneration: integrating the old with new. Semin Cell Dev Biol 13(5):345–352

    Article  CAS  PubMed  Google Scholar 

  • Globus M (1988) A neuromitogenic role for substance P in urodele limb regeneration. In: Inoue S, et al (eds) Regeneration and development. Okada, Maebashi

    Google Scholar 

  • Goss RJ (1956) The relation of bone to the histogenesis of cartilage in regenerating forelimbs and tails of adult Trituris viridescens. J Morphol 98:89–123

    Article  Google Scholar 

  • Han MJ, An JY, Kim WS (2001) Expression patterns of Fgf-8 during development and limb regeneration of the axolotl. Dev Dyn 220(1):40–48, doi:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1085>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  • Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K (2005) Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat 287(1):14–24. doi:10.1002/ar.b.20082

    Article  PubMed  Google Scholar 

  • Hirata A, Gardiner DM, Satoh A (2010) Dermal fibroblasts contribute to multiple tissues in the accessory limb model. Dev Growth Differ 52(4):343–350. doi:10.1111/j.1440-169X.2009.01165.x

    Article  PubMed  Google Scholar 

  • Hutchison C, Pilote M, Roy S (2007) The axolotl limb: a model for bone development, regeneration and fracture healing. Bone (NY) 40(1):45–56. doi:10.1016/j.bone.2006.07.005

    Article  Google Scholar 

  • Ide H (2012) Bone pattern formation in mouse limbs after amputation at the forearm level. Dev Dyn 241(3):435–441. doi:10.1002/dvdy.23728

    Article  CAS  PubMed  Google Scholar 

  • Kiffmeyer WR, Tomusk EV, Mescher AL (1991) Axonal transport and release of transferrin in nerves of regenerating amphibian limbs. Dev Biol 147(2):392–402

    Article  CAS  PubMed  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature (Lond) 460(7251):60–65. doi:10.1038/nature08152

    Article  CAS  Google Scholar 

  • Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318(5851):772–777. doi:10.1126/science.1147710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levesque M, Villiard E, Roy S (2010) Skin wound healing in axolotls: a scarless process. J Exp Zool B Mol Dev Evol 314(8):684–697. doi:10.1002/jez.b.21371

    Article  PubMed  Google Scholar 

  • Makanae A, Satoh A (2012) Early regulation of axolotl limb regeneration. Anat Rec 295(10):1566–1574. doi:10.1002/ar.22529

    Article  CAS  Google Scholar 

  • Martin GR (1998) The roles of FGFs in the early development of vertebrae limbs. Genes Dev 12:1571–1586. doi:10.1101/gad.12.11.1571

    Article  CAS  PubMed  Google Scholar 

  • Moriyasu M, Makanae A, Satoh A (2012) Spatiotemporal regulation of keratin 5 and 17 in the axolotl limb. Dev Dyn 241(10):1616–1624. doi:10.1002/dvdy.23839

    Article  CAS  PubMed  Google Scholar 

  • Mullen LM, Bryant SV, Torok MA, Blumberg B, Gardiner DM (1996) Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development (Camb) 122(11):3487–3497

    CAS  Google Scholar 

  • Muller TL, Ngo-Muller V, Reginelli A, Taylor G, Anderson R, Muneoka K (1999) Regeneration in higher vertebrates: limb buds and digit tips. Semin Cell Dev Biol 10(4):405–413. doi:10.1006/scdb.1999.0327

    Article  CAS  PubMed  Google Scholar 

  • Muneoka K, Bryant SV (1982) Evidence that patterning mechanisms in developing and regenerating limbs are the same. Nature (Lond) 298(5872):369–371

    Article  CAS  Google Scholar 

  • Nye HL, Cameron JA, Chernoff EA, Stocum DL (2003) Regeneration of the urodele limb: a review. Dev Dyn 226(2):280–294. doi:10.1002/dvdy.10236

    Article  PubMed  Google Scholar 

  • Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development (Camb) 124(11):2235–2244

    CAS  Google Scholar 

  • Poulin ML, Patrie KM, Botelho MJ, Tassava RA, Chiu IM (1993) Heterogeneity in the expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Development (Camb) 119(2):353–361

    CAS  Google Scholar 

  • Satoh A, Gardiner DM, Bryant SV, Endo T (2007) Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputation-induced blastemas. Dev Biol 312(1):231–244. doi:10.1016/j.ydbio.2007.09.021

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Graham GMC, Bryant SV, Gardiner DM (2008) Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 319(2):321–335. doi:10.1016/j.ydbio.2008.04.030

    Google Scholar 

  • Satoh A, Bryant SV, Gardiner DM (2008a) Regulation of dermal fibroblast dedifferentiation and redifferentiation during wound healing and limb regeneration in the axolotl. Dev Growth Differ 50(9):743–754. doi:10.1111/j.1440-169X.2008.01072.x

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Graham GM, Bryant SV, Gardiner DM (2008b) Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 319(2):321–335. doi:10.1016/j.ydbio.2008.04.030

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Cummings GM, Bryant SV, Gardiner DM (2010a) Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 337(2):444–457. doi:10.1016/j.ydbio.2009.11.023

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Makanae A, Hirata A, Satou Y (2011) Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration. Dev Biol 355(2):263–274. doi:10.1016/j.ydbio.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Bryant SV, Gardiner DM (2012a) Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Dev Biol 366(2):374–381. doi:10.1016/j.ydbio.2012.03.022

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Hirata A, Makanae A (2012b) Collagen reconstitution is inversely correlated with induction of limb regeneration in Ambystoma mexicanum. Zool Sci 29(3):191–197. doi:10.2108/zsj.29.191

    Article  CAS  PubMed  Google Scholar 

  • Seifert AW, Monaghan JR, Voss SR, Maden M (2012b) Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PloS One 7(4):e32875. doi:10.1371/journal.pone.0032875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sive H, Bradley L (1996) A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning. Dev Dyn 205(3):265–280. doi:10.1002/(SICI)1097-0177(199603)205:3<265::AID-AJA7>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  • Spallanzani L (1769) An essay on animal reproductions. Reproductions of the legs in the aquatic salamander. Becket and de Hondt, London

    Google Scholar 

  • Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature (Lond) 418(6897):501–508. doi:10.1038/nature00902

    Article  CAS  Google Scholar 

  • Suzuki M, Yakushiji N, Nakada Y, Satoh A, Ide H, Tamura K (2006) Limb regeneration in Xenopus laevis froglet. Sci World J 6(suppl 1):26–37. doi:10.1100/tsw.2006.325

    Article  Google Scholar 

  • Todd TJ (1823) On the process of reproduction of the members of the aquatic salamander. Q J Sci Lit Arts 16:84–96

    Google Scholar 

  • Wang L, Marchionni MA, Tassava RA (2000) Cloning and neuronal expression of a type III newt neuregulin and rescue of denervated, nerve-dependent newt limb blastemas by rhGGF2. J Neurobiol 43(2):150–158

    Article  CAS  PubMed  Google Scholar 

  • Whited JL, Lehoczky JA, Austin CA, Tabin CJ (2011) Dynamic expression of two thrombospondins during axolotl limb regeneration. Dev Dyn 240(5):1249–1258. doi:10.1002/dvdy.22548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yakushiji N, Suzuki M, Satoh A, Sagai T, Shiroishi T, Kobayashi H, Sasaki H, Ide H, Tamura K (2007) Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol 312(1):171–182. doi:10.1016/j.ydbio.2007.09.022

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H (2008) Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ 50(1):13–22. doi:10.1111/j.1440-169X.2007.00973.x

    Article  CAS  PubMed  Google Scholar 

  • Yonei-Tamura S, Endo T, Yajima H, Ohuchi H, Ide H, Tamura K (1999) FGF7 and FGF10 directly induce the apical ectodermal ridge in chick embryos. Dev Biol 211(1):133–143. doi:10.1006/dbio.1999.9290

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Han M, Yan M, Lee J, Muneoka K (2012) BMP2 induces segment-specific skeletal regeneration from digit and limb amputations by establishing a new endochondral ossification center. Dev Biol 372(2):263–273. doi:10.1016/j.ydbio.2012.09.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yusuf F, Brand-Saberi B (2012) Myogenesis and muscle regeneration. Histochem Cell Biol 138(2):187–199. doi:10.1007/s00418-012-0972-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Satoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Satoh, A. (2014). Limb Regeneration: Reconstitution of Complex Organs Using Specific Tissue Interactions. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_15

Download citation

Publish with us

Policies and ethics