Skip to main content

Contribution of Apoptosis in Cranial Neural Tube Closure Indicated by Mouse Embryo Live Imaging

  • Chapter
  • First Online:
  • 994 Accesses

Abstract

Many cells die during development through the process called programmed cell death (PCD). Dysregulation of apoptosis, a major form of PCD during development, leads to cranial neural tube closure (NTC) defects such as exencephaly, but the underlying mechanism has remained unclear. Observing cells undergoing apoptosis in the normal developmental process will help elucidate their nature, characteristics, and interaction with surrounding tissues. Using a newly developed transgenic mouse that stably expressed a genetically encoded FRET-based fluorescent reporter for caspase activation, we performed simultaneous time-lapse imaging of apoptosis and morphogenesis in living embryos. This analysis, based on live imaging, indicated that inhibition of caspase activation interfered with and delayed the progression of NTC in the cranial region. The analysis also revealed existence of two types of apoptotic cells during NTC. Based on these results, we propose that cell removal by caspase-mediated apoptosis facilitates NTC and ensues the completion of NTC within a limited developmental time window.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aoki K, Komatsu N, Hirata E, Kamioka Y, Matsuda M (2012) Stable expression of FRET biosensors: a new light in cancer research. Cancer Sci 103:614–619

    Article  CAS  PubMed  Google Scholar 

  • Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289. doi:10.1016/j.devcel.2009.07.014, pii: S1534-5807(09)00298-6

    Article  CAS  PubMed  Google Scholar 

  • Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181(3):195–213

    Article  CAS  PubMed  Google Scholar 

  • Copp AJ, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220(2):217–230

    CAS  PubMed  Google Scholar 

  • Copp AJ, Greene ND, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4(10):784–793

    Article  PubMed  Google Scholar 

  • Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378–390

    Article  CAS  PubMed  Google Scholar 

  • Elliott MR, Ravichandran KS (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189(7):1059–1070. doi:10.1083/jcb.201004096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758. doi:10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  • Grimsley C, Ravichandran KS (2003) Cues for apoptotic cell engulfment: eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol 13(12):648–656

    Article  CAS  PubMed  Google Scholar 

  • Haigo SL, Hildebrand JD, Harland RM, Wallingford JB (2003) Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr Biol 13(24):2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA, Klibanov AL, Yan Z, Mandell JW, Ravichandran KS (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature (Lond) 497(7448):263–267. doi:10.1038/nature12135

    Article  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11. doi:10.1038/cdd.2008.150, pii: cdd2008150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature (Lond) 384(6607):368–372. doi:10.1038/384368a0

    Article  CAS  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94(3):325–337, pii: S0092-8674(00)81476-2

    Article  CAS  PubMed  Google Scholar 

  • Li F, Huang Q, Chen J, Peng Y, Roop D, Bedford J, Li C (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3(110):ra13

    PubMed Central  PubMed  Google Scholar 

  • Massa V, Savery D, Ybot-Gonzalez P, Ferraro E, Rongvaux A, Cecconi F, Flavell R, Greene ND, Copp AJ (2009) Apoptosis is not required for mammalian neural tube closure. Proc Natl Acad Sci USA 106(20):8233–8238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massarwa R, Niswander L (2013) In toto live imaging of mouse morphogenesis and new insights into neural tube closure. Development (Camb) 140(1):226–236. doi:10.1242/dev.085001

    Article  CAS  Google Scholar 

  • Miura M (2011) Active participation of cell death in development and organismal homeostasis. Dev Growth Differ 53:125–136

    Article  CAS  PubMed  Google Scholar 

  • Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, Mochizuki A, Sakaue-Sawano A, Miyawaki A, Yoshida H, Kuida K, Miura M (2013) Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Deve Cell 27:621–634

    Google Scholar 

  • Pyrgaki C, Trainor P, Hadjantonakis A, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev Biol 344:941–947

    Article  CAS  PubMed  Google Scholar 

  • Takemoto K, Nagai T, Miyawaki A, Miura M (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160(2):235–243. doi:10.1083/jcb.200207111, pii: jcb.200207111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toyama Y, Peralta XG, Wells AR, Kiehart DP, Edwards GS (2008) Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321(5896):1683–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallingford J (2006) Planar cell polarity, ciliogenesis and neural tube defects. Hum Mol Genet 15(Special No 2):R227–R234

    Article  CAS  PubMed  Google Scholar 

  • Wallingford J, Harland R (2002) Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development (Camb) 129:5815–5825

    Article  CAS  Google Scholar 

  • Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA 105(35):12815–12819. doi:10.1073/pnas.0707715105, pii: 0707715105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weil M, Jacobson MD, Raff MC (1997) Is programmed cell death required for neural tube closure? Curr Biol 7(4):281–284, pii: S0960-9822(06)00125-4

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Miura M (2012) How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 70(17):3171–86. doi:10.1007/s00018-012-1227-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi Y, Shinotsuka N, Nonomura K, Takemoto K, Kuida K, Yosida H, Miura M (2011) Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure. J Cell Biol 195:1047–1060. doi:10.1083/jcb.201104057

    Google Scholar 

  • Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6):739–750

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yamaguchi, Y., Shinotsuka, N., Nonomura, K., Miura, M. (2014). Contribution of Apoptosis in Cranial Neural Tube Closure Indicated by Mouse Embryo Live Imaging. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_11

Download citation

Publish with us

Policies and ethics