Skip to main content

Enzymatic Production of Designed Peptide

  • Chapter
  • First Online:
  • 2083 Accesses

Abstract

Peptides are expected to be one of the most promising compounds that are beneficial for improving our quality of life. Research on functional peptides has been carried out in various fields, including food science, medicine, and cosmetics; new findings are frequently reported. Oligopeptides such as dipeptides or tripeptides also have unique physiological functions and physical properties that cannot be found in the constitutive amino acids. However, only a few dipeptides, such as l-aspartyl-l-phenylalanine methyl ester (Asp-Phe-OMe, aspartame), as an artificial sweetener and l-alanyl-l-glutamine (Ala-Gln), as a patient infusion, are commercially used, which can be attributed to the lack of an efficient process for production of these oligopeptides. Therefore, the development of an oligopeptide manufacturing process is important for addressing the growing needs of functional peptides. Recently, bacterial enzymes that produce various dipeptides, oligopeptides, or homopoly(oligo) amino acids have been found. l-Amino acid α-ligase (Lal, EC 6.3.2.28) belongs to the ATP-dependent (ADP-forming) carboxylate-amine/thiol ligase superfamily that catalyzes the condensation of unprotected amino acids and is applicable to fermentative production. In this group, ATP and Mg2+ are generally required for peptide synthesis, and aminoacyl phosphate is synthesized as the reaction intermediate. Various Lals have been newly identified by in silico searches using a BLAST program and by different approaches including purification of putative Lal from microorganisms producing peptide antibiotics as secondary metabolites. Furthermore, using only an adenylation domain (A-domain) of nonribosomal peptide synthetase (NRPS), various aminoacyl prolines, which are dipeptides containing a proline residue at the C-terminus, or various amide compounds can be synthesized from unprotected amino acids and proline without any additional process. This chapter reviews the current knowledge about these unique enzymes and novel enzymatic production methods of designed peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arai T, Kino K (2008) A novel l-amino acid ligase is encoded by a gene in the phaseolotoxin biosynthetic gene cluster from Pseudomonas syringae pv. phaseolicola 1448A. Biosci Biotechnol Biochem 72:3048–3050

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Kino K (2010) New l-amino acid ligases catalyzing oligopeptide synthesis from various microorganisms. Biosci Biotechnol Biochem 74:1572–1577

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Arimura Y, Ishikura S, Kino K (2013a) L-Amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for the enzymatic synthesis of various functional peptides. Appl Environ Microbiol 79:5023–5029

    Google Scholar 

  • Arai T, Noguchi A, Takano E, Kino K (2013b) Application of protein N-terminal amidase in enzymatic synthesis of dipeptides containing acidic amino acids specifically at the N-terminus. J Biosci Bioeng 115:382–387

    Article  CAS  PubMed  Google Scholar 

  • Borisova SA, Circello BT, Zhang JK, van der Donk WA, Metcalf WW (2010) Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chem Biol 17:28–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Bernardini R, Harnedy P, Bolton D, Kerry J, O’Neill E, Mullen AM, Hayes M (2011) Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem 124:1296–1307

    Article  Google Scholar 

  • Fan C, Moews PC, Shi Y, Walsh CT, Knox JR (1995) A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and d-alanine:d-alanine ligase of Escherichia coli. Proc Natl Acad Sci USA 92:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–487

    Article  CAS  PubMed  Google Scholar 

  • Furukawa-Hibi Y, Nitta A, Ikeda T, Morishita K, Liu W, Ibi D, Alkam T, Nabeshima T, Yamada K (2011) The hydrophobic dipeptide Leu-Ile inhibits immobility induced by repeated forced swimming via the induction of BDNF. Behav Brain Res 220:271–280

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY, Koonin EV (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6:2639–2643

    Article  CAS  PubMed  Google Scholar 

  • Hernández JG, Juaristi E (2011) Asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides: improved stereoinduction under solvent-free conditions. J Org Chem 76:1464–1467

    Article  PubMed  Google Scholar 

  • Hernández-Ledesma B, del Mar CM, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165:23–35

    Article  PubMed  Google Scholar 

  • Inaoka T, Takahashi K, Ohnishi-Kameyama M, Yoshida M, Ochi K (2003) J Biol Chem 278:2169–2176

    Article  CAS  PubMed  Google Scholar 

  • Kagebayashi T, Kontani N, Yamada Y, Mizushige T, Arai T, Kino K, Ohinata K (2012) Novel CCK-dependent vasorelaxing dipeptide, Arg-Phe, decreases blood pressure and food intake in rodents. Mol Nutr Food Res 56:1456–1463

    Article  CAS  PubMed  Google Scholar 

  • Kino K, Nakazawa Y, Yagasaki M (2008a) Dipeptide synthesis by l-amino acid ligase from Ralstonia solanacearum. Biochem Biophys Res Commun 371:536–540

    Article  CAS  PubMed  Google Scholar 

  • Kino K, Noguchi A, Nakazawa Y, Yagasaki M (2008b) A novel l-amino acid ligase from Bacillus licheniformis. J Biosci Bioeng 106:313–315

    Article  CAS  PubMed  Google Scholar 

  • Kino K, Kotanaka Y, Arai T, Yagasaki M (2009) A novel l-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin. Biosci Biotechnol Biochem 73:901–907

    Article  CAS  PubMed  Google Scholar 

  • Kino K, Noguchi A, Arai T, Yagasaki M (2010a) Identification and characterization of a novel l-amino acid ligase from Photorhabdus luminescens subsp. laumondii TT01. J Biosci Bioeng 110:39–41

    Article  CAS  PubMed  Google Scholar 

  • Kino K, Arai T, Tateiwa D (2010b) A novel l-amino acid ligase from Bacillus subtilis NBRC3134 catalyzed oligopeptide synthesis. Biosci Biotechnol Biochem 74:129–134

    Article  CAS  PubMed  Google Scholar 

  • Kino K, Arai T, Arimura Y (2011) Poly-α-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12. Appl Environ Microbiol 77:2019–2025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kugler M, Loeffler W, Rapp C, Kern A, Jung G (1990) Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties. Arch Microbiol 153:276–281

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RE (1976) Isolation and structure of a chlorosis-inducing toxin of Pseudomonas phaseolicola. Phytochemistry 15:1941–1947

    Article  CAS  Google Scholar 

  • Sgadari C, Bacigalupo I, Barillari G, Ensoli B (2011) Pharmacological management of Kaposi’s sarcoma. Expert Opin Pharmacother 12:1669–1690

    CAS  PubMed  Google Scholar 

  • Stewart WW (1971) Isolation and proof of structure of wildfire toxin. Nature (Lond) 229:174–178

    Article  CAS  Google Scholar 

  • Tabata K, Hashimoto S (2007) Fermentative production of l-alanyl-l-glutamine by a metabolically engineered Escherichia coli strain expressing l-amino acid alpha-ligase. Appl Environ Microbiol 73:6378–6385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabata K, Ikeda H, Hashimoto S (2005) ywfE in Bacillus subtilis codes for a novel enzyme, l-amino acid ligase. J Bacteriol 187:5195–5202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuneyoshi Y, Yamane H, Tomonaga S, Morishita K, Denbow DM, Furuse M (2008) Reverse structure of carnosine-induced sedative and hypnotic effects in the chick under acute stress. Life Sci 82:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Weber AL, Pizzarello S (2006) The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc Natl Acad Sci USA 103:12713–12717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniki Kino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kino, K. (2014). Enzymatic Production of Designed Peptide. In: Anazawa, H., Shimizu, S. (eds) Microbial Production. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54607-8_17

Download citation

Publish with us

Policies and ethics