Skip to main content

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS)

  • Chapter
Cognitive Neuroscience Robotics B

Abstract

Magnetic resonance imaging (MRI) has a wide range of applications in medical diagnosis and preclinical research. MRI was invented about 40 years ago, and there are currently estimated to be over 25,000 scanners in the world. In general, contrast agents are not necessary for MRI and the soft tissue contrast of MRI is better than other imaging techniques. The important point is that MRI intensity depends on not only the concentration but also physico-chemical properties of molecules in tissues. In the first part of this chapter, several kinds of MRI techniques are described. Magnetic resonance spectroscopy (MRS) is an application of magnetic resonance. The second part of this chapter is concerned with MRS. This technique provides information in metabolism non-invasively, and obtains spectra from a region of interest two- and three-dimensionally. Some physiological parameters, such as pH and temperature, can be estimated by the spectra. Applications of MRI and MRS are very broad, since many factors affect MRI signals. Functional MRI (fMRI) is an important application used widely in the neurosciences, human sciences, and economics, as well as in medical sciences. The major restriction of MRI is its long scan time. An accelerated technique is described in the last part of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold, J.T., Dharmatti, S.S., Packard, M.E.: Chemical effects on nuclear induction signals from organic compounds. J. Chem. Phys. 19, 507 (1951)

    Article  Google Scholar 

  • Bandettini, P.A.: Twenty years of functional MRI: the science and the stories. Neuroimage 62, 575–588 (2012)

    Article  Google Scholar 

  • Basser, P.J., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  • Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)

    Article  Google Scholar 

  • Bloch, F., Hansen, W.W., Packard, M.: Nuclear induction. Phys. Rev. 69, 127 (1946)

    Article  Google Scholar 

  • Brand, A., Richter-Landsberg, C., Leibfritz, D.: Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci. 15, 289–298 (1993)

    Article  Google Scholar 

  • Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153 (1971)

    Article  Google Scholar 

  • Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Fox, M.D., Greicius, M.: Clinical applications of resting state functional connectivity. Front. Syst. Neurosci. 4, 19 (2010)

    Google Scholar 

  • Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)

    Article  Google Scholar 

  • Frahm, J., Krüger, G., Merboldt, K.D., Kleinschmidt, A.: Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn. Reson. Med. 35, 143–148 (1996)

    Article  Google Scholar 

  • Gill, S.S., Small, R.K., Thomas, D.G., Patel, P., Porteous, R., Van Bruggen, N., Gadian, D.G., Kauppinen, R.A., Williams, S.R.: Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed. 2, 196–200 (1989)

    Article  Google Scholar 

  • Goldstein, F.B.: The enzymatic synthesis of N-acetyl-L-aspartic acid by subcellular preparations of rat brain. J. Biol. Chem. 244, 4257–4260 (1969)

    Google Scholar 

  • Greene, J., Haidt, J.: How (and where) does moral judgment work? Trends Cogn. Sci. 6, 517–523 (2002)

    Article  Google Scholar 

  • Haacke, E.M., Brown, R.F., Thompson, M., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999)

    Google Scholar 

  • Hetherington, H.P., Mason, G.F., Pan, J.W., Ponder, S.L., Vaughan, J.T., Twieg, D.B., Pohost, G.M.: Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1 T. Magn. Reson. Med. 32, 565–571 (1994)

    Article  Google Scholar 

  • Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)

    Article  Google Scholar 

  • Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2), 401–407 (1986)

    Article  Google Scholar 

  • Le Bihan, D., Urayama, S., Aso, T., Hanakawa, T., Fukuyama, H.: Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc. Natl. Acad. Sci. U. S. A. 103, 8263–8268 (2006)

    Article  Google Scholar 

  • Li, B.S., Wang, H., Gonen, O.: Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn. Reson. Imaging 21, 923–928 (2003)

    Article  Google Scholar 

  • Lustig, M., Donoho, D., Pauly, J.: Sparse mri: the application of compressed sensing for rapid mr imaging. Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  • Magistretti, P.J., Pellerin, L.: Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1155–1163 (1999)

    Article  Google Scholar 

  • Moffett, J.R., Ross, B., Arun, P., Madhavarao, C.N., Namboodiri, A.M.: N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007)

    Article  Google Scholar 

  • Mori, S.: Introduction to Diffusion Tensor Imaging. Elsevier, Amsterdam/Boston (2007)

    Google Scholar 

  • Mori, S., Barker, P.B.: Diffusion magnetic resonance imaging: its principle and applications. Anat. Rec. 257, 102–109 (1999)

    Article  Google Scholar 

  • Mori, Y., Yoshioka, Y.: Visualization of immune cell dynamics in mouse brain with 11.7 T MRI. Proc. Intl. Soc. Magn. Reson. Med. 20, 911 (2012)

    Google Scholar 

  • Mori, Y., Umeda, M., Fukunaga, M., Ogasawara, K., Yoshioka, Y.: MR contrast in mouse lymph nodes with subcutaneous administration of iron oxide particles: size dependency. Magn. Reson. Med. Sci. 10, 219–227 (2011)

    Article  Google Scholar 

  • Moseley, M.E., Cohen, Y., Mintorovitch, J.: Early detection of regional cerebral ischemic injury in cats: evaluation of diffusion and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 14, 330–346 (1990)

    Article  Google Scholar 

  • Ogawa, S., Sung, Y.W.: Functional magnetic resonance imaging. Scholarpedia 2(10), 3105 (2007)

    Article  Google Scholar 

  • Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U. S. A. 87, 9868–9872 (1990)

    Article  Google Scholar 

  • Pan, J.W., Twieg, D.B., Hetherington, H.P.: Quantitative spectroscopic imaging of the human brain. Magn. Reson. Med. 40, 363–369 (1998)

    Article  Google Scholar 

  • Pauling, L., Coryell, C.D.: The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxy hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 22, 210–216 (1936)

    Article  Google Scholar 

  • Pouwels, P.J., Frahm, J.: Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn. Reson. Med. 39, 53–60 (1998)

    Article  Google Scholar 

  • Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., Hanstock, C., Shulman, R.: Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. U. S. A. 88, 5829–5831 (1991)

    Article  Google Scholar 

  • Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946)

    Article  Google Scholar 

  • Rabi, I.I., Zacharias, J.R., Millman, S., Kusch, P.: A new method of measuring magnetic moments. Phys. Rev. 53, 318 (1938)

    Article  Google Scholar 

  • Ross, B.D., Blüml, S.: New aspects of brain physiology. NMR Biomed. 9, 279–296 (1996)

    Article  Google Scholar 

  • Ross, B., Blüml, S.: Magnetic resonance spectroscopy of the human brain. Anat. Rec. 265, 54–84 (2001)

    Article  Google Scholar 

  • Signoretti, S., Marmarou, A., Tavazzi, B., Lazzarino, G., Beaumont, A., Vagnozzi, R.: N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J. Neurotrauma 18, 977–991 (2001)

    Article  Google Scholar 

  • Soares, D.P., Law, M.: Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin. Radiol. 64, 12–21 (2009)

    Article  Google Scholar 

  • Srinivasan, R., Sailasuta, N., Hurd, R., Nelson, S., Pelletier, D.: Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128, 1016–1025 (2005)

    Article  Google Scholar 

  • Taylor, D.L., Davies, S.E., Obrenovitch, T.P., Doheny, M.H., Patsalos, P.N., Clark, J.B., Symon, L.: Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J. Neurochem. 65, 275–281 (1995)

    Article  Google Scholar 

  • Thulborn, K.R., Warterton, C.J., Matthews, P.M., Radda, G.K.: Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta 714, 265–270 (1982)

    Article  Google Scholar 

  • Urenjak, J., Williams, S.R., Gadian, D.G., Noble, M.: Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J. Neurochem. 59, 55–61 (1992)

    Article  Google Scholar 

  • Wang, Y., Li, S.J.: Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 39, 28–33 (1998)

    Article  Google Scholar 

  • Zhang, X., Bearer, E.L., Perles-Barbacaru, A.T., Jacobs, R.E.: Increased anatomical detail by in vitro MR microscopy with a modified Golgi impregnation method. Magn. Reson. Med. 63, 1391–1397 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshichika Yoshioka .

Editor information

Editors and Affiliations

Exercises

Exercises

  1. 1.

    What is nuclear magnetic moment?

  2. 2.

    What is resonance?

  3. 3.

    What is the resonance frequency of proton at 1.5 T?

  4. 4.

    What is the chemical shift?

  5. 5.

    What is the longitudinal relaxation time?

  6. 6.

    What is the transverse relaxation time?

  7. 7.

    What limits the resolution of MRI?

  8. 8.

    Why is the gradient coil necessary for MRI?

  9. 9.

    What is the contrast agent for MRI?

  10. 10.

    What factors influence water diffusion?

  11. 11.

    What is the Nyquist frequency?

  12. 12.

    What is the wavelet transformation?

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Mori, Y., Kida, I., Fukuchi, H., Fukunaga, M., Yoshioka, Y. (2016). Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS). In: Kasaki, M., Ishiguro, H., Asada, M., Osaka, M., Fujikado, T. (eds) Cognitive Neuroscience Robotics B. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54598-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54598-9_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54597-2

  • Online ISBN: 978-4-431-54598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics