Skip to main content

Brain Machine-Interfaces for Sensory Systems

  • Chapter
Cognitive Neuroscience Robotics B

Abstract

A brain–machine interface (BMI) is a system that provides direct communication between the brain and an external device. It is designed to assist or repair human cognitive or sensory-motor functions. BMI research has studied sensory systems with a focus on the use of neuro-prosthetic devices to restore impaired hearing or vision.

Because of cortical plasticity, signals from implanted prostheses can be processed by the brain after rehabilitation.

The most widely used neuro-prosthetic devices are cochlear implants. A cochlear implant is activated by sound waves, and signals generated from it are filtered and decomposed into an envelope and a temporal structure, which are then converted into electrical energy. The electrical energy then stimulates the auditory nerve. Speech perception scores typically continue to improve during the first 3–12 months of implant use, suggesting that plastic changes occur in the brain to use sparse inputs better.

In retinal prosthesis, a camera takes an image, and a computer processes and transmits it wirelessly to the implant. The implant maps the image across an array of electrodes, and it stimulates neurons in the retina and sends neural signals to the visual cortex. The recipients then perceive a monochromatic pattern of dots.

Several approaches exist in rental prosthesis; epiretinal prosthesis in which electrode array is inserted under the retina, subretinal prosthesis in which electrode array is fixed on the retina, suprachoroidal prosthesis in which electrode array is inserted in the suprachoroidal space or in the sclera pocket.

Currently, the best decimal visual acuity achieved by retinal prosthesis is 0.037 by subretinal prosthesis. Even though the visual acuity is still poor, patients with implants can read large letters. To achieve an improvement of the quality of life for blind patients implanted with a retinal prosthesis, not only an improvement of surgical procedures and engineering advancement but also a development of effective rehabilitation are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brelen, M.E., Vince, V., Gerard, B., et al.: Measurement of evoked potentials after electrical stimulation of the human optic nerve. Invest. Ophthalmol. Vis. Sci. 51, 5351–5355 (2010)

    Article  Google Scholar 

  • Brindley, G., Rushton, D.: Implanted stimulators of the visual cortex as visual prosthetic devices. Trans. Am. Acad. Ophthalmol. Otolaryngol. 78, 741–745 (1974)

    Google Scholar 

  • da Cruz, L., Coley, B.F., Dorn, J., et al.: The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol. 97, 632–636 (2013)

    Article  Google Scholar 

  • Dobelle, W.H.: Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46(1), 3–9 (2000)

    Article  Google Scholar 

  • Dobelle, W.H., Mladejovsky, M.G.: Phosphenes produced by electrical stimulation of human occipital cortex: and their application to the development of a prosthesis for the blind. J. Physiol. 243(2), 553–576 (1974)

    Article  Google Scholar 

  • Fujikado, T., Morimoto, T., Kanda, H.: Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch. Clin. Exp. Ophthalmol. 245, 1411–1419 (2007)

    Article  Google Scholar 

  • Fujikado, T., Kamei, M., Sakaguchi, H., et al.: Testing of semi-chronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 52, 4726–4733 (2011)

    Article  Google Scholar 

  • Helms, J., Mueller, J., Schon, F., et al.: Evaluation of performance with the COMBI 40 cochlear implant in adults: a multicentric clinical study. ORL J. Oto-Rhino-Laryngol. Relat. Spec. 59, 23–35 (1997)

    Article  Google Scholar 

  • Humayun, M.S., de Juan, E.J., Dagnelie, G., et al.: Visual perception elicited by electrical stimulation of retina in blind humans. Arch. Ophthalmol. 114(1), 40–46 (1996)

    Article  Google Scholar 

  • Humayun, M.S., Dorn, J.D., da Cruz, L., et al.: Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119(4), 779–788 (2012)

    Article  Google Scholar 

  • Maynard, E.M., Nordhausen, C.T., Normann, R.A.: The Utah intracortical electrode array: a recording structure for potential brain–computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102(3), 228–239 (1997)

    Article  Google Scholar 

  • Morimoto, T., Kanda, H., Kondo, M., et al.: Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits. Invest. Ophthalmol. Vis. Sci. 28(53), 4254–4261 (2012)

    Article  Google Scholar 

  • Niparko, J.K., Tobey, E.A., ThaI, D.J., et al.: Spoken language development in children following cochlear implantation. J. Am. Med. Assoc. 303, 1498–1506 (2010)

    Article  Google Scholar 

  • Rubinstein, J.T.: How cochlear implants encode speech. Curr. Opin. Otolaryngol. Head Neck Surg. 12, 444–448 (2004)

    Article  Google Scholar 

  • Schatz, A., Röck, T., Naycheva, L., et al.: Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Invest. Ophthalmol. Vis. Sci. 52(7), 4485–4496 (2011)

    Article  Google Scholar 

  • Schmidt, E.M., Bak, M.J., Hambrecht, F.T., et al.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt. 2), 507–522 (1996)

    Article  Google Scholar 

  • Stingl, K., Bartz-Schmidt, K.U., Besch, D., et al.: Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proceed. R. Soc. Biol. Sci. 280(1757), 20130077 (2013)

    Article  Google Scholar 

  • Veraart, C., Raftopoulos, C., Mortimer, J.T., et al.: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 813(1), 181–186 (1998)

    Article  Google Scholar 

  • Villalobos, J., Nayagam, D.A., Allen, P.J., et al.: A wide-field suprachoroidalretinal prosthesis is stable and well tolerated following chronic implantation. Invest. Ophthalmol. Vis. Sci. 54, 3751–3762 (2013)

    Article  Google Scholar 

  • Wilson, B.S., Dorman, M.F., Woldorff, M.G., et al.: Cochlear implants matching the prosthesis to the brain and facilitating desired plastic changes in brain function. In: Schollellbor, J., Ganviczallli, M., Donielsell, N. (eds.) Progress in Brain Research, Elsevier, Amsterdam,vol. 194, pp. 117–129 (2011)

    Google Scholar 

  • Zrenner, E.: Will retinal implants restore vision? Science 295(5557), 1022–1025 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Fujikado .

Editor information

Editors and Affiliations

Exercise

Exercise

  1. 1.

    From the point of view of cognitive neuroscience, in which patient is it appropriate to implant a cochlear prosthesis, a prelingually deafened patient or a postlingually deafened patient? If there is any condition for implantation for either patient, describe it.

  2. 2.

    What parameters does the visual prosthesis use to reconstruct the vision?

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fujikado, T. (2016). Brain Machine-Interfaces for Sensory Systems. In: Kasaki, M., Ishiguro, H., Asada, M., Osaka, M., Fujikado, T. (eds) Cognitive Neuroscience Robotics B. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54598-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54598-9_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54597-2

  • Online ISBN: 978-4-431-54598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics