Skip to main content

Abstract

This chapter discusses android science as an interdisciplinary framework bridging robotics and cognitive science. Android science is expected to be a fundamental research area in which the principles of human-human communications and human-robot communications are studied. In the framework of android science, androids enable us to directly exchange bodies of knowledge gained by the development of androids in engineering and the understanding of humans in cognitive science. As an example of practice in android science, this chapter introduces geminoids, very humanlike robots modeled on real persons, and explains how body ownership transfer occurs for the operator of a geminoid. The phenomenon of body ownership transfer is studied with a geminoid and a brain-machine interface system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The materials of Sects. 9.1 and 9.2 are adopted and modified from Ishiguro (2007; doi: 10.1177/0278364907074474), thanks to Sage Publications.

  2. 2.

    The material of Sect. 9.4 is adopted and modified from Ishiguro and Nishio (2007), with kind permission from Springer Science + Business Media.

  3. 3.

    The material on body ownership transfer below is adopted and modified from Nishio et al. (2012), with kind permission from Springer Science + Business Media.

  4. 4.

    The material on body ownership transfer and brain-machine interface here is adopted and modified from Alimardani et al. (2003), thanks to Science Publishing Group.

References

  • Alimardani, M., Nishio, S., Ishiguro, H.: Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators. Sci. Rep. 3, 2396 (2013)

    Article  Google Scholar 

  • Armel, K., Ramachandran, V.: Projecting sensations to external objects: evidence from skin conductance response. Proc. Biol. Sci. 270(1523), 1499–1506 (2003)

    Article  Google Scholar 

  • Botvinick, M.: Rubber hands ‘feel’ touch that eyes see. Nature 391(6669), 756 (1998)

    Article  Google Scholar 

  • Brooks, R.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  • Chapman, C., Jiang, W., Lamarre, Y.: Modulation of lemniscal input during conditioned arm movements in the monkey. Exp. Brain Res. 72, 316–334 (1988)

    Article  Google Scholar 

  • Ehrsson, H.: The experimental induction of out-of-body experiences. Science 317, 1048 (2007)

    Article  Google Scholar 

  • Ehrsson, H., Holmes, N., Passingham, R.: Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25, 10564–10573 (2005)

    Article  Google Scholar 

  • Harnad, S.: The symbol grounding problem. Phys. D 42, 335–346 (1990)

    Article  Google Scholar 

  • Hashimoto, T., Hiramatsu, S., Kobayashi, H.: Development of face robot for emotional communication between human and robot. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, (2006)

    Google Scholar 

  • Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput. Hum. Interact. 7(2), 174–196 (2000)

    Article  Google Scholar 

  • Home page of the Loebner Prize in artificial intelligence, “The first Turing Test,” http://www.loebner.net/Prizef/loebner-prize.Html

  • Ikeda, T., Ishida, T., Ishiguro, H.: Framework of distributed audition. In: Proceedings of the 13th IEEE International Workshop of Robot and Human Interactive Communication (ROMAN), pp. 77–82, (2004)

    Google Scholar 

  • Ishiguro, H.: Scientific issues concerning androids. Int. J. Robot. Res. 26(1), 105–117 (2007)

    Article  Google Scholar 

  • Ishiguro, H., Nishio, S.: Building artificial humans to understand humans. J. Artif. Organs 10(3), 133–142 (2007)

    Article  Google Scholar 

  • Ishiguro, H., Nishimura, T.: VAMBAM: view and motion based aspect models for distributed omnidirectional vision systems. In: Proceedings of the International of the Joint Conference on Artificial Intelligence (IJCAI), pp. 1375–1380, (2001)

    Google Scholar 

  • Ishiguro, H.: Distributed vision system: a perceptual information infrastructure for robot navigation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 36–41, (1997)

    Google Scholar 

  • Ishiguro, H., Ono, T., Imai, M., Maeda, T., Kanda, T., Nakatsu, R.: Robovie: an interactive humanoid robot. Int. J. Ind. Robot. 28(6), 498–503 (2001)

    Article  Google Scholar 

  • Ishiguro, H.: Toward interactive humanoid robots: a constructive approach to developing intelligent robot. In: Proceedings of the 1st International Joint Conference on the Autonomous Agents and Multiagent Systems, Invited talk, Part 2, pp. 621–622, (2002)

    Google Scholar 

  • Itakura, S.: Gaze following and joint visual attention in nonhuman animals. Jpn. Psychol. Res. 46, 216–226 (2004)

    Article  Google Scholar 

  • Kanda, T., Ishiguro, H., Ishida, T.: Psychological analysis on human-robot interaction. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 4166–4171, (2001)

    Google Scholar 

  • Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Development and evaluation of interactive humanoid robots. Proc. IEEE 92(11), 1839–1850 (2004)

    Article  Google Scholar 

  • Kilner, J., Paulignan, Y., Blakemore, S.: An interference effect of observed biological movement on action. Curr. Biol. 13, 522–525 (2003)

    Article  Google Scholar 

  • Lang, P.J., Greenwald, M.K., Bradley, M.M., Hamm, A.O.: Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273 (1993)

    Google Scholar 

  • Lebedev, M., Nicolelis, M.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006)

    Article  Google Scholar 

  • Lebedev, M., Denton, J., Nelson, R.: Vibration-entrained and premovement activity in monkey primary somatosensory cortex. J. Neurophysiol. 72, 1654–1673 (1994)

    Google Scholar 

  • MacDorman, K., Minato, T., Shimada, M., Itakura, S., Cowley, S.J., Ishiguro, H.: Assessing human likeness by eye contact in an android testbed. In: Proceedings of Annual Meeting of the Cognitive Science Society, (2005)

    Google Scholar 

  • McCarthy, A., Lee, K., Muir, D.: Eye gaze displays that index knowing, thinking and guessing. In: Proceedings of the Annual Conference on American Psychological Society, (2001)

    Google Scholar 

  • Minato, T., Shimada, M., Itakura, S., Lee, K., Ishiguro, H.: Evaluating the human likeness of an android by comparing gaze behaviors elicited by the android and a person. Adv. Robot. 20, 1147–1163 (2006)

    Article  Google Scholar 

  • Mori, M.: Bukimi no tani (the uncanny valley). Energy 7, 33–35 (1970)

    Google Scholar 

  • Neuper, C., Muller-Putz, G., Scherer, R., Pfurtscheller, G.: Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog. Brain Res. 159, 393–409 (2006)

    Article  Google Scholar 

  • Nishio, S., Ishiguro, H., Hagita, N.: Geminoid: teleoperated android of an existing person. In: de Pina Filho, A. (ed.) Humanoid Robots: New Developments. I-Tech Education and Publishing, Vienna (2007)

    Google Scholar 

  • Nishio, S., Watanabe, T., Ogawa, K., Ishiguro, H.: Body ownership transfer to teleoperated android robot. In: Paper presented at the International Conference on Social Robotics, pp. 398–407, (2012)

    Google Scholar 

  • O’Doherty, J., et al.: Active tactile exploration using a brain-machine-brain interface. Nature 479, 228–231 (2011)

    Article  Google Scholar 

  • Pavani, F.: Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol. Sci. 11(5), 353–359 (2000)

    Article  Google Scholar 

  • Perani, D., Fazio, F., Borghese, N., Tettamanti, M., Ferrari, S., Decety, J., Gilardi, M.: Different brain correlates for watching real and virtual hand actions. NeuroImage 14, 749–758 (2001)

    Article  Google Scholar 

  • Perlin, K.: Real time responsive animation with personality. IEEE Trans. Vis. Comput. Graph. 1(1), 5–15 (1995)

    Article  Google Scholar 

  • Personal robot PaPeRo, NEC Co. (Online). Available http://www.incx.nec.co.jp/robot/PaPeRo/english/p_index.html

  • Petkova, V., Ehrsson, H.: If I were you: perceptual illusion of body swapping. PLoS One 3, e3832 (2008)

    Article  Google Scholar 

  • Prut, Y., Fetz, E.: Primate spinal interneurons show pre-movement instructed delay activity. Nature 401, 590–594 (1999)

    Article  Google Scholar 

  • Shimada, S., Fukuda, K., Hiraki, K.: Rubber hand illusion under delayed visual feedback. PLoS One 4(7), e6185 (2009)

    Article  Google Scholar 

  • Tsakiris, M.: My body in the brain: a neurocognitive model of body-ownership. Neuropsychologia 48(3), 703–712 (2010)

    Article  Google Scholar 

  • Tsakiris, M., Haggard, P., Frank, N., Mainy, N., Sirigu, A.: A specific role for efferent information in self-recognition. Cognition 96, 215–231 (2007)

    Article  Google Scholar 

  • Turing, A.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  • Voss, M., Ingram, J., Wolpert, D., Haggard, P.: Mere expectation to move causes attenuation of sensory signals. PLoS One 3, e2866 (2008)

    Article  Google Scholar 

  • Walsh, L., Moseley, G., Taylor, J., Gandevia, S.: Proprioceptive signals contribute to the sense of body ownership. J. Physiol. 589, 3009–3021 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ishiguro .

Editor information

Editors and Affiliations

Exercises

Exercises

  1. 1.

    Discuss how we should balance teleoperated functions and automated functions in order to realize the geminoid that can work as the avatar of the operator.

  2. 2.

    It is of merit if the geminoid can generate movements autonomously according to operator’s voice, since it is difficult to control them remotely. Consider the voice-based methods for generating movements, such as head movements, eye blinking, and body movements.

  3. 3.

    Design a new psychological experiment on humanlikeness by using androids.

  4. 4.

    Discuss practical applications of androids and geminoids in the next decade.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ishiguro, H. (2016). Android Science. In: Kasaki, M., Ishiguro, H., Asada, M., Osaka, M., Fujikado, T. (eds) Cognitive Neuroscience Robotics A. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54595-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54595-8_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54594-1

  • Online ISBN: 978-4-431-54595-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics