Behavioral Decision Theories that Explain Decision-Making Processes

  • Kazuhisa Takemura


This article will explain various behavioral decision theories related to decision-making processes. As explained last time, decision strategies for decision-making take numerous forms. The selection of decision strategies is affected by such condition factors as the number of alternatives and the number of attributes. Numerous models have been proposed to explain the psychological processes related to such a selection of decision strategies. This chapter will introduce some models that are useful to explain decision-making processes. It ends with some speculation about the future of modern behavioral decision theories while referring to their relation with fields related to neuroscience, such as neuroeconomics, that have been developed in recent years.


Prospect Theory Cognitive Effort Decision Strategy Processing Resource Expect Utility Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abelson, R. P., & Levi, A. (1985). Decision making and decision theory. In G. Lindzey & E. Aronson (Eds.), The handbook of social psychology (3rd ed., Vol. 1, pp. 231–309). New York: Random House.Google Scholar
  2. Adelbratt, T., & Montgomery, H. (1980). Attractiveness of decision rules. Acta Psychologica, 45, 177–185.CrossRefGoogle Scholar
  3. Aristotle (1971). Nikomakosu Rinrigaku [Trans. by S. Takada (Ed.), Nichomachean ethics]. Tokyo: Iwanami Shoten.Google Scholar
  4. Bach, D. R., Seymour, B., & Dolan, R. J. (2009). Neural activity associated with the passive prediction of ambiguity and risk for aversive events. Journal of Neuroscience, 29(6), 1648–1656.CrossRefGoogle Scholar
  5. Baum, W. M. (1974). On two types of deviation from the matching law: Bias and undermatching. Journal of Experimental Analysis of Behavior, 22, 231–242.CrossRefGoogle Scholar
  6. Baum, W. M. (1979). Matching, undermatching, and overmatching in studies of choice. Journal of experimental Analysis of Behavior, 32, 269–281.CrossRefGoogle Scholar
  7. Beach, L. R., & Mitchell, T. R. (1978). A contingency model for the selection of decision strategies. Academy of Management Review, 3, 439–449.Google Scholar
  8. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.CrossRefGoogle Scholar
  9. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.Google Scholar
  10. Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123, 2189–2202.CrossRefGoogle Scholar
  11. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–225.CrossRefGoogle Scholar
  12. Brandstätter, E., Giggerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without tradeoffs. Psychological Review, 113, 409–432.CrossRefGoogle Scholar
  13. Busemeyer, J. R., & Johnson, J. G. (2004). Computational models of decision making. In D. J. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision (pp. 133–154). Malden: Blackwell.CrossRefGoogle Scholar
  14. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic cognition approach to decision making. Psychological Review, 100, 432–459.CrossRefGoogle Scholar
  15. De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313, 684–687.CrossRefGoogle Scholar
  16. Fechner, G. T. (1860). Elemente der psychophysik. Leipzig: Breitkopf und Härtel (Reprinted, Bristol: Thoemmes Press, 1999).Google Scholar
  17. Fujii, S., & Takemura, K. (2001). Fuehina no hosoku to randamu koyo riron ni motozuku ippan taio hosoku no rironteki setsumei [Theoretical explanation of generalized matching law based on fechner law and random utility theory]. Paper presented at the 65th Conference of the Japanese Psychological Association, 580.Google Scholar
  18. Fujii, S., & Takemura, K. (2002). Fechner law and random utility hypothesis leads the matching law. Paper presented at Society for Judgment and Decision Making. Kansas City, MO, USA.Google Scholar
  19. Gigerenzer, G. (2004). Fast and frugal heuristics: The tools of bounded rationality. In D. J. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (pp. 62–88). Malden: Blackwell.CrossRefGoogle Scholar
  20. Gigerenzer, G., & Goldstein, D. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650–669.CrossRefGoogle Scholar
  21. Gigerenzer, G., & Selten, R. (Eds.). (2001). Bounded rationality: The adaptive toolbox. Cambridge: MIT.Google Scholar
  22. Gigerenzer, G., Todd, P. M., & The ABC Research Group (Eds.). (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
  23. Gonzalez, C., Dana, J., Koshino, H., & Just, M. (2005). The framing effect and risky decisions: Examining cognitive functions with fMRI. Journal of Economic Psychology, 26, 1–20.Google Scholar
  24. Hernstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of Experimental Analysis of Behavior, 4, 267–272.CrossRefGoogle Scholar
  25. Hernstein, R. J., & Vaughan, W., Jr. (1980). Melioration and behavioral allocation. In J. E. R. Staddon (Ed.), Limits to action: The allocation of individual behavior (pp. 143–176). New York: Academic.CrossRefGoogle Scholar
  26. Hirota, S., Masuda, S., & Sakagami, T. (2002). Shinrigaku ga egaku risuku no sekai: Kodoteki ishikettei nyumon [The world of risk drawn by psychology: An introduction to behavioral decision-making]. Tokyo: Keio University Press.Google Scholar
  27. Hisatomi, T., Isobe, A., Oniwa, T., Matsui, Y., Ui, M., Takahashi, N., & Takemura, K. (2005). Anshin to fuan no shakai shinri (IV): Ishikettei sutairu to shinrai tono kanrensei [Social psychology of security and insecurity (IV): Relevance between decision-making style and trust]. Paper presented at the 46th Conference of the Japanese Society of Social Psychology (pp. 230–231).Google Scholar
  28. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310, 1680–1683.CrossRefGoogle Scholar
  29. Huettel, S. A., Stowe, C. J., Gordon, E. M., Warner, B. T., & Platt, M. L. (2006). Neural signatures of economic preferences for risk and ambiguity. Neuron, 49, 765–775.CrossRefGoogle Scholar
  30. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefGoogle Scholar
  31. Knuston, B., Rick, S., Wimmer, G., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53, 147–156.CrossRefGoogle Scholar
  32. Kobashi, Y. (1988). Ninchi kagaku sensho 18 kettei wo shien suru [Selected works in cognitive science 18: Support decisions]. Tokyo: University of Tokyo Press.Google Scholar
  33. Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, F. X., & Milham, M. P. (2006). Distinct neural mechanisms of risk and ambiguity: A meta-analysis of decision-making. Neuro Image, 32, 477–484.Google Scholar
  34. Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of subjective value under risk and ambiguity. Journal of Neurophysiology, 103, 1036–1047.CrossRefGoogle Scholar
  35. Loewenstein, G., Rick, S., & Cohen, J. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647–672.CrossRefGoogle Scholar
  36. Mazur, J. E. (1998). Learning and behavior (4th ed.). Englewood Cliffs: Prentice Hall [Translated into Japanese by Iso, H., Sakagami, T., & Kawai, N. (1999). Meiza No Gakushu To Kodo Japanese Second ed. Hiheisha].Google Scholar
  37. Montgomery, H. (1983). Decision rules and the search for a dominance structure: Towards a process model of decision making. In P. C. Humphreys, O. Svenson, & A. Vari (Eds.), Analyzing and aiding decision processes (pp. 343–369). Amsterdam: North-Holland.CrossRefGoogle Scholar
  38. Montgomery, H. (1993). The search for a dominance structure in decision making: Examining the evidence. In G. A. Klein, J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.), Decision making in action: Models and methods (pp. 182–187). Norwood: Ablex.Google Scholar
  39. Mori, K., Tsuzuki, T., & Kusumi, T. (2001). Konekushonisuto moderu to shinrigaku: Nou no shimyureshon ni yoru kokoro no rikai [Connectionist model and psychology: Understanding mind through brain simulation]. Kyoto: Kitaohji Shobo.Google Scholar
  40. Nakamura, K. (2004). Kosoku kenyaku hyurisutikku no shinrigakuteki datosei wo meguru jisshoteki, gainenteki giron no doko [Trends in empirical and conceptual argument on the psychological propriety of fast and frugal heuristics]. Japanese Psychological Review, 47, 453–477.Google Scholar
  41. Payne, J. W., & Bettman, J. R. (2004). Walking with the scarecrow: The information-processing approach to decision research. In D. J. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision (pp. 110–132). Malden: Blackwell.CrossRefGoogle Scholar
  42. Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Payne, J. W., Johnson, E. J., Bettman, J. R., & Coupey, E. (1990). Understanding contingent choice: A computer simulation approach. IEEE Transactions on Systems, Man, and Cybernetics, 20, 303.CrossRefGoogle Scholar
  44. Rachlin, H., Logue, A. W., Gibbon, J., & Frankel, M. (1986). Cognition and behavior in studies of choice. Psychological Review, 93, 33–45.CrossRefGoogle Scholar
  45. Roe, R., Busemeyer, J. R., & Townsend, J. T. (2001). Multi-alternative decision field theory: A dynamic connectionist model of decision-making. Psychological Review, 108, 370–392.CrossRefGoogle Scholar
  46. Sakagami, T. (1994). Fukakujitsusei wo meguru dobutsu kodo kenkyu [Study of animal behavior concerning uncertainty]. Japanese Psychological Review, 37, 294–323.Google Scholar
  47. Sakagami, T. (1997). Kodo keizaigaku to sentaku riron [Behavioral economics and selection theory]. Japanese Journal of Behavior Analysis, 11, 88–108.Google Scholar
  48. Sanfey, A. G. (2007a). Decision neuroscience: New directions in studies of judgment and decision making. Current Directions in Psychological Science, 16, 151–155.CrossRefGoogle Scholar
  49. Sanfey, A. G. (2007b). Social decision making: Insights from game theory and neuroscience. Science, 318, 598–602.CrossRefGoogle Scholar
  50. Schwartz, B. (2004). The paradox of choice: Why more is less. New York: HarperCollins [Translated into Japanese by Mizuho, N. (2004). Naze Erabu Tabi Ni Kokai Surunoka: ‘Sentaku No Jiyu’ No Otoshiana. Tokyo: Random House Kodansha].Google Scholar
  51. Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White, K., & Lehman, D. R. (2002). Maximizing versus satisficing: Happiness is a matter of choice. Journal of Personality and Social Psychology, 83, 1178–1197.CrossRefGoogle Scholar
  52. Simon, H. A. (1957). Administrative behavior: A study of decision making process in administrative organization. New York: McMillan.Google Scholar
  53. Takemura, K. (1985). Ishikettei sutorateji jikko ni okeru meta ninchi katei moderu [Metacognition process model in the implementation of decision-making strategy]. Doshisha Psychological Review, 32, 16–22.Google Scholar
  54. Takemura, K. (1996a). Ishikettei to sono shien [Decision-making and its support]. In S. Ichikawa (Ed.), Ninchi shinrigaku 4kan shiko [Cognition psychology, vol. 4: Thoughts (pp. 81–105). Tokyo: University of Tokyo Press.Google Scholar
  55. Takemura, K. (1996b). Ishikettei no shinri: Sono katei no tankyu [Psychology of decision-making: Inquiry into its process]. Tokyo: Fukumura Shuppan.Google Scholar
  56. Takemura, K. (1998). Ishi kettei no shinri [Psychology of decision-making]. Tokyo: Fukumura Shuppan.Google Scholar
  57. Takemura, K. (2009). Ishikettei to shinkei keizaigaku [Decision-making and neuroeconomics]. Japanese Journal of Clinical Psychiatry, 38, 35–42.Google Scholar
  58. Takemura, K. & Fujii, S. (2004). Interpretation of matching law: From the assumptions of Luce choice axiom, Fechner law, and random utility maximization. Paper presented at the 35th European Mathematical Psychology Group Meeting, Ghent Belgium. Google Scholar
  59. Takemura, K., Ideno, T., Ohkubo, S., & Matsui, H. (2008a). Shinkei keizai gaku to zentoyo [Neuroeconomics and frontal lobe]. Bunshi seishin igaku [Japanese Journal of Molecular Psychiatry], 8(38), 122.Google Scholar
  60. Takemura, K., et al. (2008b). Shinkei keizaigaku to zentoyo [Neuroeconomics and the frontal lobe]. Bunshi Seishin Igaku, 8, 119–124.Google Scholar
  61. Thurstone, L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.CrossRefGoogle Scholar
  62. Tsuzuki, T., & Asakawa, S. (2003). Ninchi kagaku to konekushonisuto moderu [Cognitive science and the connectionist model]. Cognitive Studies, 10, 2–8.Google Scholar
  63. Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.CrossRefGoogle Scholar
  64. Vaughan, W., Jr. (1981). Melioration, matching, and maximization. Journal of Experimental Analysis of Behavior, 36, 141–149.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Kazuhisa Takemura
    • 1
  1. 1.Department of PsychologyWaseda UniversityTokyoJapan

Personalised recommendations