Skip to main content

Delayed Response of Silica Melt to Pump Modulation

  • Chapter
  • First Online:
Fiber Fuse

Part of the book series: NIMS Monographs ((NIMSM))

  • 658 Accesses

Abstract

Periodic void formation has the function of a built-in clock made of silica melt, and its frequency is expected to shift with changes in pump power. Thus, the variation in the periodic void interval along the fiber length is precisely measured to determine the relationship with the pump power modulation. This analysis revealed the sub-millisecond order delayed response of the silica melt. Moreover, a large power jump suspends the clock and leave a void-free segment or a long void until the melt restores its state of thermal equilibrium.

On ne voit bien qu’avec le coeur. L’essentiel est invisible pour les yeux. — ‘Le Petit Prince’,

Antoine de Saint-Exupéry

It is only with the heart that one can see rightly; what is essential is invisible to the eye. — ‘The Little Prince’,

Katherine Woods (trans.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Atkins, P.G. Simpkins, A.D. Yablon, Track of a fiber fuse: a rayleigh instability in optical waveguides. Opt. Lett. 28(12), 974–976 (2003). doi:10.1364/OL.28.000974

    Article  Google Scholar 

  2. I.A. Bufetov, A.A. Frolov, A.V. Shubin, M.E. Likhachev, C.V. Lavrishchev, E.M. Dianov, Fiber fuse effect: new results on the fiber damage structure, in Proceedings of the 33rd European Conference on Optical Communication, vol. 1, pp. 79–80. IEE’s Photonics Professional Network, Berlin, Germany (2007), (Mon 1.5.2)

    Google Scholar 

  3. I.A. Bufetov, A.A. Frolov, A.V. Shubin, M.E. Likhachev, S.V. Lavrishchev, E.M. Dianov, Propagation of an optical discharge through optical fibres upon interference of modes. Quantum Electron. 38(5), 441–444 (2008). doi:10.1070/QE2008v038n05ABEH013751

    Article  Google Scholar 

  4. S. Chandrasekhar, in Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics (Oxford, England), (Dover Publications, USA, 1981) (ISBN 978-0486640716)

    Google Scholar 

  5. D.D. Davis, S.C. Mettler, D.J. DiGiovani, Experimental Data on the Fiber Fuse, in: SPIE Proceedings 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, vol. 2714, ed. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, pp. 202–210. SPIE (1996), (Boulder, CO, USA, 30 Oct 1995). doi:10.1117/12.240382

  6. T.J. Driscoll, J.M. Calo, N.M. Lawandy, Explaining the optical fuse. Opt. Lett. 16(13), 1046–1048 (1991). doi:10.1364/OL.16.001046

  7. D.P. Hand, P.S.J. Russell, Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. Opt. Lett. 13(9), 767–769 (1988). doi:10.1364/OL.13.000767

  8. C. Isenberg, The Science of Soap Films and Soap Bubbles, new edn. (Dover Publications, USA, 1992) (ISBN 978-0486269603)

    Google Scholar 

  9. S. Todoroki, Transient propagation mode of fiber fuse leaving no voids. Opt. Express 13(23), 9248–9256 (2005). doi:10.1364/OPEX.13.009248

  10. S. Todoroki, In-Situ Observation of Fiber-Fuse Ignition, in International Conference on Lasers, Applications, and Technologies 2005: Laser-Assisted Micro- and Nanotechnologies, SPIE Proceedings, vol. 6161, ed. by V.I. Konov, V.Y. Panchenko, K. Sugioka, V.P. Veiko pp. 61,610N-1-4. SPIE (2006), (St. Petersburg, Russia, 14 May 2005, LSK3). doi:10.1117/12.675080

  11. S. Todoroki, In situ observation of modulated light emission of fiber fuse synchronized with void train over hetero-core splice point. PLoS One 3(9), e3276 (2008). doi:10.1371/journal.pone.0003276

  12. S. Todoroki, Threshold power reduction of fiber fuse propagation through a white tight-buffered single-mode optical fiber. IEICE Electr. Express 8(23), 1978–1982 (2011). doi:10.1587/elex.8.1978

  13. S. Todoroki, Partially Self-Pumped Fiber Fuse Propagation Through a White Tight-Buffered Single-Mode Optical Fiber, in Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America, USA (2012). doi:10.1364/OFC.2012.OTh4I.4. Paper OTh4I.4

  14. S. Todoroki, Fiber Fuse Propagation Modes in Typical Single-Mode Fibers, in Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America (2013). doi:10.1364/NFOEC.2013.JW2A.11. Paper JW2A.11

  15. S.I. Yakovlenko, Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre. Quantum Electron. 34(8), 765–770 (2004). doi:10.1070/QE2004v034n08ABEH002845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Todoroki .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Todoroki, Si. (2014). Delayed Response of Silica Melt to Pump Modulation. In: Fiber Fuse. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54577-4_4

Download citation

Publish with us

Policies and ethics