Skip to main content

Silica Glass Optical Fiber and Fiber Fuse

  • Chapter
  • First Online:
Fiber Fuse

Part of the book series: NIMS Monographs ((NIMSM))

Abstract

There is serious concern in the telecommunication industry that the transmission capacity limit may be reached in the near future. One reason for this is the fiber fuse phenomenon, which is the continuous self-destruction of silica glass optical fiber induced and fed by propagating light. This phenomenon imposes an inevitable limit on the light power that can be handled by a fiber and prevents us from increasing the transmission capacity growth of optical communication. This chapter briefly reviews the basics of silica glass optical fibers and the fiber fuse phenomenon. The initiation of a fiber fuse is caused by the generation of a thermally decomposed product of silica glass. Its high absorbance results in a confined plasma (or optical discharge) propagating along the fiber core. This is due to the excellent heat resistance and low thermal conductivity of silica glass.

figure a

Don’t tell me the moon is shining; show me the glint of light on broken glass.

— Anton Pavlovich Chekhov.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Abedin, T. Morioka, Remote detection of fiber fuse propagating in optical fibers, in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2009). doi:10.1364/OFC.2009.OThD5 (OThD5)

  2. K.S. Abedin, M. Nakazawa, Real time monitoring of a fiber fuse using an optical time-domain reflectometer. Opt. Expr. 18(20), 21315–21321 (2010). doi:10.1364/OE.18.021315

  3. K.S. Abedin, M. Nakazawa, T. Miyazaki, Backreflected radiation due to a propagating fiber fuse. Opt. Expr. 17(8), 6525–6531 (2009). doi:10.1364/OE.17.006525

    Article  Google Scholar 

  4. N. Akhmediev, A. Ankiewicz, Dissipative solitons in the complex Ginzburg-Landau and Swift-Hohenberg equations, in Dissipative Solitons, Lecture Notes in Physics, ed. by N. Akhmediev, A. Ankiewicz (Springer, Berlin, 2005), pp. 1–17, doi:10.1007/10928028_1 (ISBN 978-3-540-31528-5)

    Google Scholar 

  5. N. Akhmediev, J. St, P. Russell, M. Taki, J.M. Soto-Crespo, Heat dissipative solitons in optical fibers. Phys. Lett. A 372(9), 1531–1534 (2008). doi:10.1016/j.physleta.2007.09.049

    Article  Google Scholar 

  6. P. André, A. Rocha, F. Domingues, M. Facão, Thermal effects in optical fibres, in Developments in Heat Transfer, ed. by M. A. dos Santos Bernardes (InTech. Croatia, 2011), pp.1–20, doi:10.5772/22812 (ISBN 978-953-307-569-3)

  7. P.S. André, M. Facão, A.M. Rocha, P. Antunes, A. Martins, Evaluation of the fuse effect propagation in networks infrastructures with different types of fibers, in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2010). doi:10.1364/NFOEC.2010.JWA10 (JWA10)

  8. A. Ankiewicz, W. Chen, J. St, P. Russell, M. Taki, N. Akhmediev, Velocity of heat dissipative solitons in optical fibers. Opt. Lett. 33(19), 2176–2178 (2008). doi:10.1364/OL.33.002176

    Article  Google Scholar 

  9. R.M. Atkins, P.G. Simpkins, A.D. Yablon, Track of a fiber fuse: a rayleigh instability in optical waveguides. Opt. Lett. 28(12), 974–976 (2003). doi:10.1364/OL.28.000974

    Article  Google Scholar 

  10. I.A. Bufetov, E.M. Dianov, Optical discharge in optical fibers. Physics-Uspekhi 48(1), 91–94 (2005). doi:10.1070/PU2005v048n01ABEH002081

    Article  Google Scholar 

  11. E.D. Bumarin, S.I. Yakovlenko, Temperature distribution in the bright spot of the optical discharge in an optical fiber. Laser Phys. 16(8), 1235–1241 (2006). doi:10.1134/S1054660X06080123

    Article  Google Scholar 

  12. D.D., Davis, S.C. Mettler, D.J. DiGiovani, Experimental data on the fiber fuse, ed. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, SPIE Proceedings, vol. 2714, Boulder, CO, USA, pp. 202–210 (1996). 30 Oct 1995, doi:10.1117/12.240382

  13. D.D. Davis, S.C. Mettler, D.J. DiGiovani, A comparative evaluation of fiber fuse models, ed. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, in Laser-Induced Damage in Optical Materials: 1996, SPIE Proceedings, vol. 2966, Boulder, CO, USA, pp. 592–606 (1997). 7 Oct 1996, doi:10.1117/12.274220

  14. E.M. Dianov, I.A. Bufetov, A.A. Frolov, Destruction of silica fiber cladding by the fuse effect, in OFC 2004 Technical Digest. Los Angels (2004) (TuB4)

    Google Scholar 

  15. E.M. Dianov, I.A. Bufetov, A.A. Frolov, Destruction of silica fiber cladding by the fuse effect. Opt. Lett. 29(16), 1852–1854 (2004b). doi:10.1364/OL.29.001852

    Article  Google Scholar 

  16. E.M. Dianov, I.A. Bufetov, A.A. Frolov, Y.K. Chamorovsky, G.A. Ivanov, I.L. Vorobjev, Fiber fuse effect in microstructured fibers. IEEE Photon. Technol. Lett. 16(1), 180–181 (2004c). doi:10.1109/LPT.2003.820465

    Article  Google Scholar 

  17. E.M. Dianov, I.A. Bufetov, A.A. Frolov, V.M. Mashinskii, V.G. Plotnichenko, M.F. Churbanov, G.E. Snopatin, Catastrophic destruction of fluoride and chalcogenide optical fibers. Electron. Lett. 38(15), 783–784 (2002a). doi:10.1049/el:20020539

    Article  Google Scholar 

  18. E.M. Dianov, I.A. Bufetov, A.A. Frolov, V.G. Plotnichenko, V.M. Mashinskii, M.F. Churbanov, G.E. Snopatin, Catastrophic destruction of optical fibres of various composition caused by laser radiation. Quantum Electron. 32(6), 476–478 (2002b). doi:10.1070/QE2002v032n06ABEH002226

    Article  Google Scholar 

  19. E.M. Dianov, V.E. Fortov, I.A. Bufetov, V.P. Efremov, A.E. Rakitin, M.A. Melkumov, M.I. Kulish, A.A. Frolov, High-speed photography, spectra, and temperature of optical discharge in silica-based fibers. IEEE Photon. Technol. Lett. 18(6), 752–754 (2006). doi:10.1109/LPT.2006.871110

  20. E.M. Dianov, V.M. Mashinskii, V.A. Myzina, Y.S. Sidorin, A.M. Streltsov, A.V. Chickolini, Change of refractive index profile in the process of laser-induced fiber damage. Sov. Lightwave Commun. 2, 293–299 (1992)

    Google Scholar 

  21. F. Domingues, A. Rocha, P. Antunes, A.R. Frias, R.A.S. Ferreira, P.S. André, Evaluation of the fuse effect propagation velocity in bend loss insensitive fibers, in Technical Digest-17th OptoElectronics and Communications Conference, OECC2012, pp. 799–800 (2012). doi:10.1109/OECC.2012.6276636 (6C3-2)

  22. T.J. Driscoll, J.M. Calo, N.M. Lawandy, Explaining the optical fuse. Opt. Lett. 16(13), 1046–1048 (1991). doi:10.1364/OL.16.001046

    Article  Google Scholar 

  23. D.A. Dvoretskiy, V.F. Hopin, A.N. Gur’yanov, L.K. Denisov, L.D. Ishakova, I.A. Bufetov, Optical losses in silica based fibers within the temperature range from 300 to 1500 K. Sci Ed. Electron. Sci. Tech. J. 5 (2013). doi:10.7463/0513.0554843 (in Russian)

  24. M. Facão, A.M. Rocha, P.S. André, Traveling solutions of the fuse effect in optical fibers. J. Lightwave Technol. 29(1), 109–114 (2011). doi:10.1109/JLT.2010.2094602

    Article  Google Scholar 

  25. R.I. Golyatina, A.N. Tkachev, S.I. Yakovlenko, Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation. Laser Phys. 14(11), 1429–1433 (2004)

    Google Scholar 

  26. V.J. Gorbachenko, A.Y. Dovzhenko, A.G. Merzhanov, E.N. Rumanov, V.E. Fortov, O.E. Yachmeneva, Propagation limits for a slow wave of optical breakdown in a fiber light guide. Dokl. Phys. 55(8), 384–387 (2010)

    Article  Google Scholar 

  27. W. Ha, Y. Jeong, K. Oh, Fiber fuse effect in hollow optical fibers. Opt. Lett. 36(9), 1536–1538 (2011). doi:10.1364/OL.36.001536

    Article  Google Scholar 

  28. D.P. Hand, T.A. Birks, Single-mode tapers as ‘fibre fuse’ damage circuit-breakers. Electron. Lett. 25(1), 33–34 (1989). doi:10.1049/el:19890024

  29. D.P. Hand, J. St, P. Russell, Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. Opt. Lett. 13(9), 767–769 (1988). doi:10.1364/OL.13.000767

    Article  Google Scholar 

  30. D.P. Hand, J.E. Townsend, P.S.J. Russell, Optical damage in fibres: the fibre fuse, in Digest of Conference on Lasers and Electro-Optics, Anaheim, US, Paper WJ1 (1988)

    Google Scholar 

  31. N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, K. Nakajima, S. Tomita, M. Tsubokawa, Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber. J. Lightwave Technol. 28(15), 2115–2120 (2010). doi:10.1109/JLT.2010.2052913

    Article  Google Scholar 

  32. J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press, Oxford, 2004). (Revised & expanded paperback edition) (ISBN 978-0195162554)

    Google Scholar 

  33. T. Izawa, S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific Publishers, Tokyo, 1987) (ISBN 978-9027723789)

    Google Scholar 

  34. H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, Transmission characteristics and reliability of pure-silica-core single-mode fibers. J. Lightwave Technol. 4(8), 1144–1150 (1986). doi:10.1109/JLT.1986.1074837

  35. K.C. Kao, G.A. Hockham, Dielectric-fibre surface waveguide for optical frequencies. Proc. Inst. Electr. Eng. 113(7), 1151–1158 (1966). doi:10.1049/piee.1966.0189

    Article  Google Scholar 

  36. F.P. Kapron, D.B. Keck, R.D. Maurer, Radiation losses in glass optical waveguides. Appl. Phys. Lett. 17(10), 423–425 (1970). doi:10.1063/1.1653255

    Article  Google Scholar 

  37. R. Kashyap, Self-propelled self-focusing damage in optical fibres, in Lasers ’87: Proceedings of the 10th International Conference on Lasers and Applications, Lake Tahoe, NV, 7–11 Dec 1987, pp. 859–866. STS Press, McLean (1988)

    Google Scholar 

  38. R. Kashyap, Fiber fuse - from a curious effect to a critical issue: a 25th year retrospective. Opt. Expr. (2013). doi:10.1364/OE.21.006422

    Google Scholar 

  39. R. Kashyap, K.J. Blow, Observation of catastrophic self-propelled self-focusing in optical fibres. Electron. Lett. 24(1), 47–49 (1988). doi:10.1049/el:19880032

    Article  Google Scholar 

  40. R. Kashyap, A. Sayles, G.F. Cornwell, Heat flow modeling and visualization of catastrophic selfpropagating damage in singlemode optical fibers at low powers, ed. by H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam, M.J. Soileau, in Laser-Induced Damage in Optical Materials: 1996, SPIE Proceedings, vol. 2966, Boulder, CO, USA, 7 Oct 1996, pp. 586–591 (1997). doi:10.1117/12.274219

  41. T. Kinoshita, N. Sato, M. Yamada, Detection and termination system for optical fiber fuse, in OptoElectronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching (OECC/PS) (2013) (Paper WS4-6)

    Google Scholar 

  42. K. Kurokawa, Optical fiber for high-power optical communication. Crystals 2(4), 1382–1392 (2012). doi:10.3390/cryst2041382

    Article  Google Scholar 

  43. M.M. Lee, J.M. Roth, T.G. Ulmer, C.V. Cryan, The fiber fuse phenomenon in polarization-maintaining fibers at 1.55 \(\upmu \)m, in Proceedings of the Conference on Lasers and Electro-Optics (CLEO) (2006) (JWB66)

    Google Scholar 

  44. T. Morioka, New generation optical infrastructure technologies : “EXAT initiative” towards 2020 and beyond, in Technical Digest-14th OptoElectronics and Communications Conference, OECC2009, p. FT4 (2009). doi:10.1109/OECC.2009.5213198

  45. N. Nishimura, K. Seo, M. Shiino, R. Yuguchi, Study of high-power endurance characteristics in optical fiber link, in Technical Digest of Optical Amplifiers and Their Applications, pp. 193–195 (2003) (TuC4) (We.P.20)

    Google Scholar 

  46. H.R. Philipp, Optical properties of non-crystalline Si, SiO, SiO\(_{x}\) and SiO\(_{2}\). J. Phys. Chem. Solids 32(8), 1935–1945 (1971). doi:10.1016/S0022-3697(71)80159-2

  47. H.R. Philipp, Silicon dioxide (SiO\(_2\)) (glass), in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, New York, 1985), pp. 749–763 (ISBN 978-0125444200)

    Google Scholar 

  48. A.M. Rocha, P. Antunes, F. Domingues, M. Facão, P.S. André, Configuration for detecting the fiber fuse propagation using a FBG sensor, in 12th International Conference on Transparent Networks. Munich, Germany (2010). doi:10.1109/ICTON.2010.5549119 (We.P.20)

  49. A.M. Rocha, F. Domingues, M. Facão, P.S. André, Threshold power of fiber fuse effect for different types of optical fiber, in The 13th International Conference on Transparent Optical Networks (ICTON 2011), pp. 1457–1549, Stockholm, Sweden (2011). doi:10.1109/ICTON.2011.5971025 (Tu.P.13)

  50. A.M. Rocha, M. Facão, A. Martins, P.S. André, Simulation of fiber fuse effect propagation, in International Conference on Transparent Networks-Mediterranean Winter 2009, Angers, France (2009). doi:10.1109/ICTONMW.2009.5385610 (FrP.12)

  51. A.M. Rocha, G. Fernandes, F. Domingues, M. Niehus, M. Facão, P.S. André, Halting the fuse discharge propagation using optical fiber microwires. Opt. Expr. 20(19), 21083–21088 (2012). doi:10.1364/OE.20.021083

    Article  Google Scholar 

  52. H.L. Schick, A thermodynamic analysis of the high-temperature vaporization properties of silica. Chem. Rev. 60(4), 331–362 (1960). doi:10.1021/cr60206a002

    Article  Google Scholar 

  53. K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, H. Sasaki, Evaluation of high-power endurance in optical fiber links. Furukawa Rev. 24, 17–22 (2003)

    Google Scholar 

  54. Y. Shuto, Heat conduction modeling of fiber fuse in single-mode optical fibers. IEICE Trans. Commun. B J94-B(8), 928–937 (2011) (in Japanese)

    Google Scholar 

  55. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse phenomenon in step-index single-mode optical fibers. IEEE J. Quantum Electron. 40(8), 1113–1121 (2004). doi:10.1109/JQE.2004.831635

    Article  Google Scholar 

  56. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse phenomenon in triangular-profile single-mode optical fibers. J. Lightwave Technol. 24(2), 846–852 (2006)

    Article  Google Scholar 

  57. A. Streek, P. Regenfuß, T. Süß, T, R. Ebert, H. Exner, Laser micro sintering of SiO\(_2\) with an NIR-laser, ed. by V.P. Veiko, in Fundamentals of Laser Assisted Micro- and Nanotechnologies (FLAMN-07), SPIE Proceedings, vol. 6985, pp. 69850Q (2008). doi:10.1117/12.787121

  58. H. Takara, H. Masuda, H. Kanbara, Y. Abe, Y. Miyamoto, R. Nagase, T. Morioka, S. Matsuoka, M. Shimizu, K. Hagimoto, Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems, in Proceedings of the 35th European Conference on Optical, Communication, p. 312 (2009) (P1.12)

    Google Scholar 

  59. K. Takenaga, S. Omori, R. Goto, S. Tanigawa, S. Matsuo, K. Himeno, Evaluation of high-power endurance of bend-insensitive fibers. in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (2008). doi:10.1109/OFC.2008.4528147 (JWA11)

  60. K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, H. Tsuchiya, Fiber fuse phenomenon in hole-assisted fibers, in Proceedings of the 34th European Conference on Optical Communication, vol. 5, pp. 27–28 (2008). doi:10.1109/ECOC.2008.4729434 (P.1.14)

  61. S. Todoroki, Animation of fiber fuse damage, demonstrating periodic void formation. Opt. Lett. 30(19), 2551–2553 (2005). doi:10.1364/OL.30.002551

    Article  Google Scholar 

  62. S. Todoroki, Origin of periodic void formation during fiber fuse. Opt. Expr. 13(17), 6381–6389 (2005). doi:10.1364/OPEX.13.006381

    Article  Google Scholar 

  63. S. Todoroki, Transient propagation mode of fiber fuse leaving no voids. Opt. Expr. 13(23), 9248–9256 (2005). doi:10.1364/OPEX.13.009248

    Article  Google Scholar 

  64. S. Todoroki, In-situ observation of fiber-fuse ignition, ed. by V.I. Konov, V.Y. Panchenko, K. Sugioka, V.P. Veiko, in International Conference on Lasers, Applications, and Technologies 2005: Laser-Assisted Micro- and Nanotechnologies, SPIE Proceedings, vol. 6161, pp. 61610N, 14 May 2005 (2006). doi:10.1117/12.675080

  65. S. Todoroki, Threshold power reduction of fiber fuse propagation through a white tight-buffered single-mode optical fiber. IEICE Electron. Expr. 8(23), 1978–1982 (2011). doi:10.1587/elex.8.1978

    Article  Google Scholar 

  66. S. Todoroki, Fiber fuse propagation behavior, in Selected Topics on Optical Fiber Technology, ed. by Y. Moh, S.W. Harun, H. Harun (InTech, Croatia, 2012), pp. 551–570. doi:10.5772/26390 (ISBN 978-953-51-0091-1)

  67. S. Todoroki, Partially self-pumped fiber fuse propagation through a white tight-buffered single-mode optical fiber, in Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America (2012). doi:10.1364/OFC.2012.OTh4I.4 (Paper OTh4I.4)

  68. S. Todoroki, Fiber fuse propagation modes in typical single-mode fibers, in Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America (2013). doi:10.1364/NFOEC.2013.JW2A.11 (Paper JW2A.11)

  69. S. Todoroki, Modes and threshold power of fiber fuse propagation. IEICE Trans. Commun. B J96-B(3), 243–248 (2013) (in Japanese, open access)

    Google Scholar 

  70. P.W. Turner, L. Dong, Drawing of silica optical fibers, in Properties of Glasses and Rare-Earth Doped Glasses for Optical Fibers, EMIS Datareview Series, ed. by D. Hewak (NSPEC, IEE, London, 1998), pp. 62–64 (ISBN 978-0852969526)

    Google Scholar 

  71. A.D. Yablon, Optical Fiber Fusion Splicing, Springer Series in Optical Sciences (Springer, Berlin, 2005). doi:10.1007/b137759 (ISBN 978-3-540-23104-2)

  72. S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, R. Naruse, Fiber fuse terminator, in The 5th Pacific Rim Conference on Lasers and Electro-Optics, vol. 1, Taipei, Taiwan, p. 386. 22–26 July 2003 (2003). doi:10.1109/CLEOPR.2003.1274838 (W4J-(8)-6)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Todoroki .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Todoroki, Si. (2014). Silica Glass Optical Fiber and Fiber Fuse. In: Fiber Fuse. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54577-4_1

Download citation

Publish with us

Policies and ethics