Advertisement

Gröbner Bases pp 345-466 | Cite as

Examples and Exercises

  • Hiromasa Nakayama
  • Kenta Nishiyama
Chapter

Abstract

There are two aspects to the study of Gröbner bases: theory and computation. For problems which are difficult to solve by theoretical approaches, it may be possible to obtain solutions by computation, using either brute force or more elegant methods. On the other hand, for problems for which the computational methods are difficult, it may be possible to obtain solutions by a combination of theoretical insight and calculations. This is one of the attractions of Gröbner bases. Chapters 4–6 emphasized the theoretical aspect. In this chapter, we present problems and answers which utilize various software systems. It is our hope that readers will perform the calculations on these software systems while studying this chapter. Following these problems and their answers, we provide easy exercises which will help the reader to understand how to use these software systems to study or apply Gröbner bases. We will use computer algebra systems, statistical software systems, and some expert systems for polytopes and toric ideals; this covers several areas related to the theory and applications of Gröbner bases.

Keywords

Linear Inequality Computer Algebra System Integration Ideal Convex Polytope Weyl Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Chyzak, An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math. 217, 115–134 (2000)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
  3. 3.
    J.A. De Loera et al., LattE. http://www.math.ucdavis.edu/~{}latte/
  4. 4.
    W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-2 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de/
  5. 5.
    A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol. 1 (McGraw-Hill, 1953)Google Scholar
  6. 6.
    E. Gawrilow, M. Joswig, polymake: a framework for analyzing convex polytopes, in Polytopes — Combinatorics and Computation (2000), pp. 43–74. http://polymake.org/
  7. 7.
    D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
  8. 8.
    R. Hemmecke, P.N. Malkin, Computing generating sets of lattice ideals and Markov bases of lattices. J. Symb. Comput. 44, 1463–1476 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    T. Hibi, Gröbner Bases (Asakura, Tokyo, 2003) (in Japanese)Google Scholar
  10. 10.
    Y. Iba, M. Tanemura, Y. Omori, H. Wago, S. Sato, A. Takahashi, Computational Statistics II. Frontiers of Statistical Science, vol. 12 (Iwanami, Tokyo, 2005) (in Japanese)Google Scholar
  11. 11.
    A.N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties. http://www.math.tu-berlin.de/~{}jensen/software/gfan/gfan.html
  12. 12.
  13. 13.
    M. Noro, An efficient modular algorithm for computing the global b-function, mathematical software, in Proceedings of ICMS2002 (World Scientific, Singapore, 2002), pp. 147–157Google Scholar
  14. 14.
    M. Noro, N. Takayama, Risa/Asir drill. http://www.math.kobe-u.ac.jp/Asir/ (2012, in Japanese)
  15. 15.
  16. 16.
    T. Oaku, Computation of the characteristic variety and the singular locus of a system. Jpn. J. Ind. Appl. Math. 11, 485–497 (1994)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    T. Oaku, D-modules and Computational Mathematics (Asakura, Tokyo, 2002) (in Japanese)Google Scholar
  18. 18.
    R Development Core Team, R: A language and environment for statistical computing. http://www.r-project.org/
  19. 19.
    J. Rambau, TOPCOM: triangulations of point configurations and oriented matroids, in Mathematical Software—ICMS 2002 (2002), pp. 330–340. http://www.rambau.wm.uni-bayreuth.de/TOPCOM/
  20. 20.
    M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations (Springer, Berlin, 2000)CrossRefMATHGoogle Scholar
  21. 21.
    A. Schrijver, Theory of Linear and Integer Programming (Wiley Interscience, New York, 1986)MATHGoogle Scholar
  22. 22.
    B. Sturmfels, Gröbner Bases and Convex Polytopes. University lecture series 8 (American Mathematical Society, Providence, 1995)Google Scholar
  23. 23.
    N. Takayama, Kan/sm1. http://www.math.kobe-u.ac.jp/KAN/
  24. 24.
    Wolfram MathWorld, Horn Function. http://mathworld.wolfram.com/HornFunction.html
  25. 25.
    G. M. Ziegler, Lectures on Polytopes (Springer, Berlin, 1995)CrossRefMATHGoogle Scholar
  26. 26.
    4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces. http://www.4ti2.de/

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Graduate School of ScienceKobe UniversityKobeJapan
  2. 2.School of Management and InformationUniversity of ShizuokaShizuokaJapan

Personalised recommendations