Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 350))

  • 1978 Accesses

Abstract

We describe a way to construct Kobayashi hyperbolic algebraic varieties, and one to construct Kobayashi hyperbolic projective hypersurfaces. Here we will effectively use the theory of entire curves given in the previous chapters. The results of this chapter can be proved so far now only through Nevanlinna theory of entire curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, given two points x,y on a complex manifold X there always exists a chain of length one, i.e., a holomorphic map f:Δ(1)→X with x,yF(Δ(1)) (see Winkelmann [05]). However, in any case we need to consider for the triangle inequality.

  2. 2.

    This statement was claimed in Babets, V.A., Picard-type theorems for holomorphic mappings, Siberian Math. J. 25 (1984), 195–200. In Theorem 1 the case of f(C)⊂D by the notation there was not dealt with, and it was stated that the quasi-Albanese variety is the product of the Albanese variety and (C )t; this is not true in general.

  3. 3.

    J. Winkelmann, On meromorphic functions which are Brody curves, arXiv:0709.3929.

References

Ax, J.

  1. Some topics in differential algebraic geometry II, Am. J. Math. 94 (1972), 1205–1213.

    Article  MathSciNet  MATH  Google Scholar 

Azukawa, K. and Suzuki, Masaaki

  1. Some examples of algebraic degeneracy and hyperbolic manifolds, Rocky Mt. J. Math. 10 (1980), 655–659.

    Article  MathSciNet  MATH  Google Scholar 

Barth, T.

  1. The Kobayashi distance induces the standard topology, Proc. Am. Math. Soc. 35 (1972), 439–441.

    Article  MathSciNet  MATH  Google Scholar 

Bloch, A.

  1. Sur les système de fonctions holomorphes à variétés linéaires lacunaires, Ann. Sci. Éc. Norm. Super. 43 (1926a), 309–362.

    MathSciNet  MATH  Google Scholar 

Brody, R.

  1. Compact manifolds and hyperbolicity, Trans. Am. Math. Soc. 235 (1978), 213–219.

    MathSciNet  MATH  Google Scholar 

Brody, R. and Green, M.

  1. A family of smooth hyperbolic hypersurfaces in P 3, Duke Math. J. 44 (1977), 873–874.

    Article  MathSciNet  MATH  Google Scholar 

Cartan, H.

  1. Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. Sci. Éc. Norm. Super. 45 (1928), 255–346.

    MathSciNet  MATH  Google Scholar 

Clunie, J. and Hayman, W.K.

  1. The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117–148.

    Article  MathSciNet  MATH  Google Scholar 

Demailly, J.P. and El Goul, J.

  1. Hyperbolicity of generic surfaces of high degree in projective 3-space, Am. J. Math. 122 (2000), 515–546.

    Article  MATH  Google Scholar 

Dufresnoy, M.J.

  1. Théorie nouvelle des familles complexes normales: Applications à l’étude des fonctions algébroïdes, Ann. Sci. Éc. Norm. Super. 61 (1944), 1–44.

    MathSciNet  MATH  Google Scholar 

Duval, J.

  1. Une sextique hyperbolique dans P 3(C), Math. Ann. 330 no. 3 (2004), 473–476.

    Article  MathSciNet  MATH  Google Scholar 

  2. Sur le lemme de Brody, Invent. Math. 173 (2008), 305–314.

    Article  MathSciNet  MATH  Google Scholar 

Eremenko, A.E.

  1. A Picard type theorem for holomorphic curves, Period. Math. Hung. 38 (1999), 39–42.

    Article  MathSciNet  MATH  Google Scholar 

Fujimoto, H.

  1. On holomorphic maps into a taut complex space, Nagoya Math. J. 46 (1972a), 49–61.

    MathSciNet  Google Scholar 

  2. A family of hyperbolic hypersurfaces in the complex projective space, Complex Var. Elliptic Equ. 43 (2001), 273–283.

    Article  MathSciNet  MATH  Google Scholar 

Green, M.L.

  1. The hyperbolicity of the complement of 2n+1 hyperplanes in general position in P n , and related results, Proc. Am. Math. Soc. 66 (1977), 109–113.

    MATH  Google Scholar 

  2. Holomorphic maps to complex tori, Am. J. Math. 100 (1978), 615–620.

    Article  MATH  Google Scholar 

Kobayashi, S.

  1. Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.

    MATH  Google Scholar 

  2. Hyperbolic Complex Spaces, Grundl. Math. Wissen. 318, Springer, Berlin, 1998.

    Book  MATH  Google Scholar 

Kodama, A.

  1. Remarks on homogeneous hyperbolic complex manifolds, Tohoku Math. J. 35 (1983), 181–186.

    Article  MathSciNet  MATH  Google Scholar 

Lang, S.

  1. Introduction to Complex Hyperbolic Spaces, Springer, Berlin, 1987.

    Book  MATH  Google Scholar 

McQuillan, M.

  1. Diophantine approximations and foliations, Publ. Math. IHÉS 87 (1998), 121–174.

    Article  MathSciNet  MATH  Google Scholar 

Nadel, A.

  1. Hyperbolic surfaces in \({\bf P}^{3}\), Duke Math. J. 58 (1989b), 749–771.

    Article  MathSciNet  MATH  Google Scholar 

Noguchi, J.

  1. Moduli spaces of holomorphic mappings into hyperbolically imbedded complex spaces and locally symmetric spaces, Invent. Math. 93 (1988), 15–34.

    Article  MathSciNet  MATH  Google Scholar 

  2. On Nevanlinna’s second main theorem, Geometric Complex Analysis, Proc. 3rd MSJ-IRI Hayama, 1995, J. Noguchi et al. (Eds.), pp. 489–503, World Scientific, Singapore, 1996.

    Google Scholar 

Noguchi, J. and Ochiai, T.

  1. Geometric Function Theory in Several Complex Variables, Transl. Math. Mono. 80, Am. Math. Soc., Providence, 1990.

    MATH  Google Scholar 

Ochiai, T.

  1. On holomorphic curves in algebraic varieties with ample irregularity, Invent. Math. 43 (1977), 83–96.

    Article  MathSciNet  MATH  Google Scholar 

Ochiai, T. and Noguchi, J.

  1. Geometric Function Theory in Several Variables (in Japanese), Iwanami Shoten, Tokyo, 1984.

    Google Scholar 

Royden, H.L.

  1. Remarks on the Kobayashi metric, Several Complex Variables II Maryland 1970, Lecture Notes in Math. 185, pp. 125–137, Springer, Berlin, 1971.

    Chapter  Google Scholar 

Shiffman, B. and Zaidenberg, M.

  1. Hyperbolic hypersurfaces in P n of Fermat-Waring type, Proc. Am. Math. Soc. 130 (2002a), 2031–2035.

    Article  MathSciNet  MATH  Google Scholar 

  2. Constructing low degree hyperbolic surfaces in P 3, Special issue for S.-S. Chern, Houst. J. Math. 28 (2002b), 377–388.

    MathSciNet  MATH  Google Scholar 

Shirosaki, M.

  1. On some hypersurfaces and holomorphic mappings, Kodai Math. J. 21 (1998), 29–34.

    Article  MathSciNet  MATH  Google Scholar 

Siu, Y.-T.

  1. Every Stein subvariety has a Stein neighborhood, Invent. Math. 38 (1976), 89–100.

    Article  MathSciNet  MATH  Google Scholar 

Voisin, C.

  1. On a conjecture of Clemens on rational curves on hypersurfaces, J. Differ. Geom. 44 (1996), 200–213; A correction “On a conjecture of Clemens on rational curves on hypersurfaces”, J. Diff. Geom. 49 (1998), 601–611.

    MathSciNet  MATH  Google Scholar 

Winkelmann, J.

  1. The Kobayashi-pseudodistance on homogeneous manifolds, Manuscr. Math. 68 (1990), 117–134.

    Article  MathSciNet  MATH  Google Scholar 

  2. Non-degenerate maps and sets, Math. Z. 249 (2005), 783–795.

    Article  MathSciNet  MATH  Google Scholar 

  3. On Brody and entire curves, Bull. Soc. Math. Fr. 135 (2007), 25–46.

    MathSciNet  MATH  Google Scholar 

Yosida, K.

  1. On a class of meromorphic functions, Proc. Phys. Math. Soc. Jpn. 16 (1934), 227–235.

    Google Scholar 

Zaidenberg, M.G.

  1. Stability of hyperbolic imbeddedness and construction of examples, Math. USSR Sb. 63 (1989), 351–361.

    Article  MathSciNet  Google Scholar 

Zalcman, L.

  1. Normal families: New perspectives, Bull. Am. Math. Soc. 35 no. 3 (1998), 215–230.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Program for Mathematica

Appendix: Program for Mathematica

figure a
figure b
figure c
figure d
figure e
figure f
figure g
figure h

An example follows to use the above program to check (7.5.12). Vectors correspond to the exponents of z 5,z 1,z 2,z 3,z 4, in that order.

figure i
figure j

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Noguchi, J., Winkelmann, J. (2014). Kobayashi Hyperbolicity. In: Nevanlinna Theory in Several Complex Variables and Diophantine Approximation. Grundlehren der mathematischen Wissenschaften, vol 350. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54571-2_7

Download citation

Publish with us

Policies and ethics