Advertisement

Semi-abelian Varieties

  • Junjiro Noguchi
  • Jörg Winkelmann
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 350)

Abstract

In the forthcoming two chapters semi-abelian varieties play an important role. For that purpose we here give a notion of semi-abelian varieties from the viewpoint of complex geometry.

Keywords

Line Bundle Algebraic Group Toric Variety Abelian Variety Ample Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Abe, Y. and Kopfermann, K.

  1. [01]
    Toroidal Groups, Lect. Notes Math. 1759, Springer, Berlin, 2001. CrossRefMATHGoogle Scholar

Abramovich, D.

  1. [94]
    Subvarieties of semiabelian varieties, Compos. Math. 90 (1994), 37–52. MathSciNetMATHGoogle Scholar

Abramovich, D. and Oort, F.

  1. [00]
    Alterations and resolution of singularities, Resolution of Singularities, Obergurgl, 1997, Progr. Math. 181, pp. 39–108, Birkhauser, Basel, 2000. CrossRefGoogle Scholar

Bierstone, E. and Milman, P.D.

  1. [97]
    Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 no. 2 (1997), 207–302. MathSciNetCrossRefMATHGoogle Scholar

Birkenhake, C. and Lange, H.

  1. [04]
    Complex Abelian Varieties, Grundl. Math. Wiss. 302, Springer, Berlin, 2004. CrossRefMATHGoogle Scholar

Borel, A.

  1. [91]
    Linear Algebraic Groups, Second Enlarged Edition, G.T.M. 126, Springer, Berlin, 1991. CrossRefMATHGoogle Scholar

Chevalley, C.

  1. [56]
    Classification des groupes de Lie algébriques, Sem. E.N.S. Exposé 8, 1956. Google Scholar
  2. [60]
    Une démonstration d’un théorème sur les groupes algébriques, J. Math. Pures Appl. 39 (1960), 307–317. MathSciNetMATHGoogle Scholar

Fujiki, A.

  1. [78b]
    On automorphism groups of compact Kähler manifolds, Invent. Math. 44 no. 3 (1978b), 225–258. MathSciNetCrossRefMATHGoogle Scholar

Fulton, W.

  1. [93]
    Introduction to Toric Varieties, Ann. Math. Studies 131, Princeton University Press, Princeton, 1993. MATHGoogle Scholar

Grauert, H. and Remmert, R.

  1. [84]
    Coherent Analytic Sheaves, Grundl. Math. Wiss. 265, Springer, Berlin, 1984. CrossRefMATHGoogle Scholar

Hartshorne, R.

  1. [70]
    Ample Subvarieties of Algebraic Varieties, Lect. Notes Math. 156, Springer, Berlin, 1970. CrossRefMATHGoogle Scholar

Hironaka, H.

  1. [64a]
    Resolution of singularities of an algebraic variety over a field of characteristic zero. I, Ann. Math. (2) 79 (1964a), 109–203, MathSciNetCrossRefMATHGoogle Scholar
  2. [64b]
    Resolution of singularities of an algebraic variety over a field of characteristic zero. II, Ann. Math. (2) 79 (1964b), 205–326. MathSciNetCrossRefGoogle Scholar

Holmann, H.

  1. [63]
    Komplexe Räume mit komplexen Transformationsgruppen, Math. Ann. 150 (1963), 327–360. MathSciNetCrossRefGoogle Scholar

Hörmander, L.

  1. [89]
    Introduction to Complex Analysis in Several Variables, Third Edition, North-Holland, Amsterdam, 1989. Google Scholar

Iitaka, S.

  1. [77]
    On logarithmic Kodaira dimension of algebraic varieties, Complex Anal. Algebr. Geom., Collect. Papers Dedic. K. Kodaira, W.L., Baily and T., Shida (Eds.), pp. 175–189, Iwanami Shoten, Tokyo, 1977. CrossRefGoogle Scholar

Kawamata, Y.

  1. [80]
    On Bloch’s conjecture, Invent. Math. 57 (1980), 97–100. MathSciNetCrossRefMATHGoogle Scholar
  2. [81]
    Characterization of abelian varieties, Compos. Math. 43 no. 2 (1981), 253–276. MathSciNetMATHGoogle Scholar

Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B.

  1. [73]
    Toroidal Embeddings I, Lect. Notes Math 339, Springer, Berlin, 1973. MATHGoogle Scholar

Lescure, F. and Meersseman, L.

  1. [02]
    Compactifications équivariantes non kählériennes d’un groupe algébrique multiplicatif, Ann. Inst. Fourier 52 no. 1 (2002), 255–273. MathSciNetCrossRefMATHGoogle Scholar

Matsusaka, T.

  1. [72]
    Polarized varieties with a given Hilbert polynomial, Am. J. Math. 94 (1972), 1027–1077. MathSciNetCrossRefMATHGoogle Scholar

Morimoto, A.

  1. [65]
    Non-compact complex Lie groups without non-constant holomorphic functions, Proc. Conf. Complex Analysis, Minneapolis, 1964, pp. 256–272, Springer, Berlin, 1965. CrossRefGoogle Scholar

Noguchi, J.

  1. [81a]
    Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J. 83 (1981a), 213–233. MathSciNetMATHGoogle Scholar

Oda, T.

  1. [85]
    Convex Bodies and Algebraic Geometry (in Japanese), Kinokuniya, Tokyo, 1985 Transl. An introduction to the theory of toric varieties, Erg. Math. 3/15, Springer, Berlin, 1988. Google Scholar

Spanier, E.

  1. [66]
    Algebraic Topology, McGraw-Hill, New York, 1966. MATHGoogle Scholar

Sumihiro, H.

  1. [75]
    Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573–605. MathSciNetMATHGoogle Scholar

Takayama, S.

  1. [01]
    Very ample line bundles on quasi-abelian varieties, Math. Z. 236 (2001), 191–200. MathSciNetCrossRefMATHGoogle Scholar

Varadarajan, V.S.

  1. [74]
    Lie Groups, Lie Algebras and Their Representations, Series in Modern Analysis, Prentice Hall, New York, 1974. Google Scholar

Voisin, C.

  1. [02]
    Hodge Theory and Complex Algebraic Geometry I, II, Cambridge University Press, Cambridge, 2002. CrossRefGoogle Scholar

Vojta, P.

  1. [96]
    Integral points on subvarieties of semiabelian varieties, I, Invent. Math. 126 (1996), 133–181. MathSciNetCrossRefMATHGoogle Scholar

Weil, A.

  1. [58]
    Introduction à l’Étude des Variétés Kähleriennes, Hermann, Paris, 1958. MATHGoogle Scholar

Winkelmann, J.

  1. [04]
    On varieties with trivial logarithmic tangent bundle, Osaka J. Math. 41 (2004), 473–484. MathSciNetMATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Junjiro Noguchi
    • 1
    • 2
  • Jörg Winkelmann
    • 3
  1. 1.The University of TokyoTokyoJapan
  2. 2.Tokyo Institute of TechnologyTokyoJapan
  3. 3.Ruhr-University BochumBochumGermany

Personalised recommendations