Advertisement

The First Main Theorem

  • Junjiro Noguchi
  • Jörg Winkelmann
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 350)

Abstract

The value distribution theory with domains in several complex variables was pioneered by Wilhelm Stoll (Math. Z. 57:211–237, 1953a; Acta Math. 90:1–115, 1953b; Acta Math. 92:55–169, 1954). While his presentation may not be familiar or easy to us in modern terminologies, the works which he has contributed, beginning with the integrations over singular analytic subvarieties and the extension of Stokes’ theorem, were fundamental. In the 1960s there were many works on the First Main Theorem; these were summarized by W. Stoll (see in Value Distribution of Holomorphic Maps into Compact Complex Manifolds, 1970, in particular its preface and the listed references). The relation to characteristic classes was made explicit first by Bott–Chern (Acta Math. 114:71–112, 1965). (Readers may find a number of interesting papers on the theory of holomorphic mappings in Chern, Selected Papers, 1978.) In the present chapter we follow Carlson–Griffiths (Ann. Math. 95:557–584, 1972), Griffiths–King (Acta Math. 130:145–220, 1973), Noguchi (Nevanlinna Theory in Several Variables and Diophantine Approximation, 2003b) and Noguchi–Winkelmann–Yamanoi (Forum Math. 20:469–503, 2008) which may be most comprehensive.

Keywords

Line Bundle Meromorphic Mapping Holomorphic Section Order Function Plurisubharmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Bott, R. and Chern, S.-S.

  1. [65]
    Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math. 114 (1965), 71–112. MathSciNetCrossRefMATHGoogle Scholar

Carlson, J. and Griffiths, P.

  1. [72]
    A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math. 95 (1972), 557–584. MathSciNetCrossRefMATHGoogle Scholar

Cartan, H.

  1. [33]
    Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica 7 (1933), 5–31. Google Scholar
  2. [50]
    Idéaux et modules de fonctions analytiques de variables complexes, Bull. Soc. Math. Fr. 78 (1950), 29–64. MathSciNetMATHGoogle Scholar
  3. [79]
    Henri Cartan, Œuvres, Collected Works, Vol. I–III, Springer, Berlin, 1979. Google Scholar

Chern, S.-S.

  1. [78]
    Selected Papers, Springer, Berlin, 1978. MATHGoogle Scholar

Fujiki, A.

  1. [78a]
    Closedness of Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14 (1978a), 1–52. MathSciNetCrossRefMATHGoogle Scholar

Grauert, H.

  1. [62]
    Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368. MathSciNetCrossRefMATHGoogle Scholar

Grauert, H. and Remmert, R.

  1. [56]
    Plurisubharmonische Funktionen in komplexen Räumen, Math. Z. 65 (1956), 175–194. MathSciNetCrossRefMATHGoogle Scholar
  2. [84]
    Coherent Analytic Sheaves, Grundl. Math. Wiss. 265, Springer, Berlin, 1984. CrossRefMATHGoogle Scholar

Griffiths, P. and King, J.

  1. [73]
    Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145–220. MathSciNetCrossRefMATHGoogle Scholar

Gunning, R.C. and Rossi, H.

  1. [65]
    Analytic Functions of Several Complex Variables, Prentice Hall, New York, 1965. MATHGoogle Scholar

Hartshorne, R.

  1. [77]
    Algebraic Geometry, G.T.M. 52, Springer, Berlin, 1977. CrossRefMATHGoogle Scholar

Hervé, M.

  1. [63]
    Several Complex Variables, Oxford University Press/Tata Institute of Fundamental Research, London/Bombay, 1963. MATHGoogle Scholar

Hörmander, L.

  1. [89]
    Introduction to Complex Analysis in Several Variables, Third Edition, North-Holland, Amsterdam, 1989. Google Scholar

Kneser, H.

  1. [38]
    Zur Theorie der gebrochenen Funktionen mehrerer Veränderlicher, Jahresber. Dtsch. Math.-Ver. 48 (1938), 1–28. Google Scholar

Kodaira, K.

  1. [54]
    On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. Math. 60 (1954), 28–48. MathSciNetCrossRefMATHGoogle Scholar
  2. [74]
    Deformations of Complex Structures of Complex Manifolds II (written by Y. Horikawa in Japanese), Todai Sem. Notes 31, 1974. Google Scholar

Lang, S.

  1. [87]
    Introduction to Complex Hyperbolic Spaces, Springer, Berlin, 1987. CrossRefMATHGoogle Scholar

Lelong, P.

  1. [68]
    Fonctions plurisousharmoniques et Formes différentielles positives, Gordon & Breach, New York, 1968. MATHGoogle Scholar

Nakano, S.

  1. [81]
    Theory of Functions in Several Complex Variables (in Japanese), Library of Math. Sci. 4, Asakura Shoten, Tokyo, 1981. Google Scholar

Narasimhan, R.

  1. [66]
    Introduction to the Theory of Analytic Spaces, Lect. Notes Math. 25, Springer, Berlin, 1966. MATHGoogle Scholar

Nishino, T.

  1. [96]
    Function Theory in Several Complex Variables, University of Tokyo Press, Tokyo, 1996 (in Japanese); Transl. from the Japanese by N. Levenberg and H. Yamaguchi (English), Transl. Math. Mono. 193, Am. Math. Soc., Providence, 2001. Google Scholar

Noguchi, J.

  1. [75]
    A relation between order and defects of meromorphic mappings of C m into P N(C), Nagoya Math. J. 59 (1975), 97–106. MathSciNetMATHGoogle Scholar
  2. [76a]
    Meromorphic mappings of a covering space over C m into a projective variety and defect relations, Hiroshima Math. J. 6 (1976a), 265–280. MathSciNetMATHGoogle Scholar
  3. [76b]
    Holomorphic mappings into closed Riemann surfaces, Hiroshima Math. J. 6 (1976b), 281–291. MathSciNetMATHGoogle Scholar
  4. [03b]
    Nevanlinna Theory in Several Variables and Diophantine Approximation (in Japanese), Kyoritsu, Tokyo, 2003b. Google Scholar
  5. [13]
    Analytic Function Theory of Several Variables (in Japanese), Asakura Shoten, Tokyo, 2013. Google Scholar

Noguchi, J. and Ochiai, T.

  1. [90]
    Geometric Function Theory in Several Complex Variables, Transl. Math. Mono. 80, Am. Math. Soc., Providence, 1990. MATHGoogle Scholar

Noguchi, J., Winkelmann, J. and Yamanoi, K.

  1. [08]
    The second main theorem for holomorphic curves into semi-abelian varieties II, Forum Math. 20 (2008), 469–503. MathSciNetMATHGoogle Scholar

Ochiai, T. and Noguchi, J.

  1. [84]
    Geometric Function Theory in Several Variables (in Japanese), Iwanami Shoten, Tokyo, 1984. Google Scholar

Oka, K. (See remark at the end of bibliography.)

  1. [42]
    Sur les fonctions analytiques de plusieurs variables, VI–Domaines pseudoconvexes, Tohoku Math. J. 49 (1942), 15–52 [Reçu 25 oct. 1941]. MathSciNetMATHGoogle Scholar
  2. [50]
    Sur les fonctions analytiques de plusieurs variables, VII–Sur quelques notions arithmétiques, Bull. Soc. Math. Fr. 78 (1950), 1–27 [Reçu 15 oct. 1948]. MathSciNetMATHGoogle Scholar
  3. [51]
    Sur les fonctions analytiques de plusieurs variables, VIII–Lemme fondamental, J. Math. Soc. Jpn. 3 no. 1 (1951), 204–214, no. 2 (1951), 259–278 [Reçu 15 mar. 1951]. MathSciNetCrossRefMATHGoogle Scholar
  4. [Iw]
    Sur les fonctions analytiques de plusieurs variables, Iwanami Shoten, Tokyo, 1961. MATHGoogle Scholar
  5. [Sp]
    Kiyoshi Oka Collected Papers, English translation by R. Narasimhan (Ed.), Springer, Berlin, 1984. CrossRefGoogle Scholar

Ohsawa, T.

  1. [98]
    Complex Analysis in Several Variables (in Japanese), Iwanami Lect. Series–Development of Modern Math. 5, Iwanami Shoten, Tokyo, 1998; Transl. Math. Mono., 211, Am. Math. Soc., Providence, 2002. Google Scholar

Rémoundos, G.

  1. [27]
    Extension aux fonctions algébroïdes multiformes du théorème de M. Picard et de ses géneralisations, Mem. Sci. Math. Acad. Sci. Paris 23 (1927), 1–66. Google Scholar

Selberg, H.L.

  1. [30]
    Über die Wertverteilung der algebroïden Funktionen, Math. Z. 31 (1930), 709–728. MathSciNetCrossRefMATHGoogle Scholar
  2. [34]
    Algebroïde Funktionen und Umkehrfunktionen Abelscher Integrale, Avh. - Nor. Vidensk.-Akad. Oslo 8 (1934), 1–72. Google Scholar

Siu, Y.-T.

  1. [74]
    Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53–156. MathSciNetCrossRefMATHGoogle Scholar

Stoll, W.

  1. [53a]
    Ganze Funktionen endlicher Ordnung mit gegebenen Nullstellenflächen, Math. Z. 57 (1953a), 211–237. MathSciNetCrossRefMATHGoogle Scholar
  2. [53b]
    Die beiden Hauptsätze der Werteverteilungstheorie bei Funktionen mehrerer komplexer Veränderlichen (I), Acta Math. 90 (1953b), 1–115. MathSciNetCrossRefGoogle Scholar
  3. [54]
    Die beiden Hauptsätze der Werteverteilungstheorie bei Funktionen mehrerer komplexer Veränderlichen (II), Acta Math. 92 (1954), 55–169. MathSciNetCrossRefGoogle Scholar
  4. [64a]
    The growth of the area of a transcendental analytic set. I, Math. Ann. 156 (1964a), 47–78. MathSciNetCrossRefMATHGoogle Scholar
  5. [64b]
    The growth of the area of a transcendental analytic set. II, Math. Ann. 156 (1964b), 144–170. MathSciNetCrossRefGoogle Scholar
  6. [70]
    Value Distribution of Holomorphic Maps into Compact Complex Manifolds, Lect. Notes Math. 135, Springer, Berlin, 1970. MATHGoogle Scholar

Toda, N.

  1. [70a]
    Sur une relation entre la croissance et le nombre de valeurs deficientes de fonctions algebroïdes ou de systèmes, Kodai Math. Semin. Rep. 22 (1970a), 114–121. MathSciNetCrossRefMATHGoogle Scholar

Ullrich, E.

  1. [32]
    Über den Einfluss der Verzweigtheit einer Algebroide auf ihre Wertverteilung, J. Reine Angew. Math. 167 (1932), 198–220. Google Scholar

Valiron, G.

  1. [29]
    Sur les fonctions algébroïdes méromorphes du second degré, C. R. Math. Acad. Sci. Paris 189 (1929), 623–625. MATHGoogle Scholar
  2. [31]
    Sur la dérivée des fonctions algébroïdes, Bull. Soc. Math. Fr. 59 (1931), 17–39. MathSciNetGoogle Scholar

Weyl, H. and Weyl, J.

  1. [38]
    Meromorphic curves, Ann. Math. 39 (1938), 516–538. MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Junjiro Noguchi
    • 1
    • 2
  • Jörg Winkelmann
    • 3
  1. 1.The University of TokyoTokyoJapan
  2. 2.Tokyo Institute of TechnologyTokyoJapan
  3. 3.Ruhr-University BochumBochumGermany

Personalised recommendations