Advertisement

Induction of Human Pluripotent Stem Cells by the Sendai Virus Vector: Establishment of a Highly Efficient and Footprint-Free System

  • Noemi Fusaki
  • Hiroshi Ban
Chapter

Abstract

The Sendai virus (SeV) vector system exhibited very high performance in transgene expression and a broad target tissue/cell range. Together with its nonintegrating nature, the potential of this vector has been suggested to be an efficient and valuable tool for generating induced pluripotent stem cells (iPSCs). Initial stage studies have shown the potential of the SeV vector and demonstrated that this system is simple and generates vector/transgene-free iPSCs with high efficiency. Subsequently, a more controllable method to eliminate the vector/transgenes from generated iPSCs has been developed by introducing several temperature-sensitive mutations into the SeV vector backbone. Based on this method, human iPSCs have been established from cord blood CD34+ cells, T cells from peripheral blood, and samples of patients with intractable diseases. In addition, a model of regenerative medicine with gene correction was presented using SeV vector-derived iPSCs from a patient with an inherited disease.

Keywords

Green Fluorescent Protein Vector Backbone Cord Blood Cell iPSC Line Human iPSCs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to M. Hasegawa and A. Iida at DNAVEC Corporation for critical reading of this manuscript. We thank Y. Yonemitsu at Kyushu University for his helpful advice.

References

  1. Ban H, Inoue M, Griesenbach U, Munkonge F, Chan M, Iida A, Alton EW, Hasegawa M (2007) Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein. Gene Ther 14:1688–1694PubMedCrossRefGoogle Scholar
  2. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA 108:14234–14239PubMedCrossRefGoogle Scholar
  3. Bowman MC, Smallwood S, Moyer SA (1999) Dissection of individual functions of the Sendai virus phosphoprotein in transcription. J Virol 73:6474–6483PubMedCentralPubMedGoogle Scholar
  4. Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X, Zitur LJ, Learish RD, Nuwaysir EF (2010) Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One 5:e11373PubMedCentralPubMedCrossRefGoogle Scholar
  5. Feller JA, Smallwood S, Skiadopoulos MH, Murphy BR, Moyer SA (2000) Comparison of identical temperature-sensitive mutations in the L polymerase proteins of Sendai and parainfluenza 3 viruses. Virology 276:190–201PubMedCrossRefGoogle Scholar
  6. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362PubMedCentralPubMedCrossRefGoogle Scholar
  7. Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodríguez-Pizà I, Vassena R, Raya A, Boué S, Barrero MJ, Corbella BA, Torrabadella M, Veiga A, Izpisua Belmonte JC (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5:353–357PubMedCentralPubMedCrossRefGoogle Scholar
  8. Hamasaki M, Hashizume Y, Yamada Y, Katayama T, Hohjoh H, Fusaki N, Nakashima Y, Furuya H, Haga N, Takami Y, Era T (2012) Pathogenic mutation of ALK2 inhibits induced pluripotent stem cell reprogramming and maintenance: mechanisms of reprogramming and strategy for drug identification. Stem Cells 30:2437–2449PubMedCrossRefGoogle Scholar
  9. Inoue M, Tokusumi Y, Ban H, Kanaya T, Tokusumi T, Nagai Y, Iida A, Hasegawa M (2003) Nontransmissible virus-like particle formation by F-deficient Sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J Virol 77:3238–3246PubMedCentralPubMedCrossRefGoogle Scholar
  10. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199PubMedCentralPubMedCrossRefGoogle Scholar
  11. Jin CH, Kusuhara K, Yonemitsu Y, Nomura A, Okano S, Takeshita H, Hasegawa M, Sueishi K, Hara T (2003) Recombinant Sendai virus provides a highly efficient gene transfer into human cord blood-derived hematopoietic stem cells. Gene Ther 10:272–277PubMedCrossRefGoogle Scholar
  12. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature (Lond) 458:771–775CrossRefGoogle Scholar
  13. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, Khan YK, Thatava T, Hasegawa M, Fusaki N, Slack JM, Ikeda Y (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1:451–461PubMedCentralPubMedCrossRefGoogle Scholar
  15. Li HO, Zhu YF, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee YS, Fukumura M, Iida A, Kato A, Nagai Y, Hasegawa M (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74:6564–6569PubMedCentralPubMedCrossRefGoogle Scholar
  16. Loh YH, Hartung O, Li H, Guo C, Sahalie JM, Manos PD, Urbach A, Heffner GC, Grskovic M, Vigneault F, Lensch MW, Park IH, Agarwal S, Church GM, Collins JJ, Irion S, Daley GQ (2010) Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7:15–19PubMedCentralPubMedCrossRefGoogle Scholar
  17. Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takayasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishi M (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286:4760–4771PubMedCrossRefGoogle Scholar
  18. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germ-line-competent induced pluripotent stem cells. Nature (Lond) 448:313–317CrossRefGoogle Scholar
  19. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953PubMedCrossRefGoogle Scholar
  20. Sakai Y, Kiyotani K, Fukumura M, Asakawa M, Kato A, Shioda T, Yoshida T, Tanaka A, Hasegawa M, Nagai Y (1999) Accommodation of foreign genes into the Sendai virus genome: sizes of inserted genes and viral replication. FEBS Lett 456:221–226PubMedCrossRefGoogle Scholar
  21. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, Okada Y, Seimiya H, Fusaki N, Hasegawa M, Fukuda K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14PubMedCrossRefGoogle Scholar
  22. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977PubMedCentralPubMedCrossRefGoogle Scholar
  23. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543–549PubMedCrossRefGoogle Scholar
  24. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949PubMedCrossRefGoogle Scholar
  25. Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R (2010) Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7:20–24PubMedCentralPubMedCrossRefGoogle Scholar
  26. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  27. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  28. Takenaka C, Nishishita N, Takada N, Jakt LM, Kawamata S (2010) Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Exp Hematol 38:154–162PubMedCrossRefGoogle Scholar
  29. Tokusumi T, Iida A, Hirata T, Kato A, Nagai Y, Hasegawa M (2002) Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 86:33–38PubMedCrossRefGoogle Scholar
  30. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630PubMedCentralPubMedCrossRefGoogle Scholar
  31. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature (Lond) 458:766–770CrossRefGoogle Scholar
  32. Yamanaka S (2010) Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 7:1–2PubMedCrossRefGoogle Scholar
  33. Yoshizaki M, Hironaka T, Iwasaki H, Ban H, Tokusumi Y, Iida A, Nagai Y, Hasegawa M, Inoue M (2006) Naked Sendai virus vector lacking all of the envelope-related genes: reduced cytopathogenicity and immunogenicity. J Gene Med 8:1151–1159PubMedCrossRefGoogle Scholar
  34. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801PubMedCentralPubMedCrossRefGoogle Scholar
  35. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordóñez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature (Lond) 478:391–394CrossRefGoogle Scholar
  36. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Department of OphthalmologyKeio University School of MedicineTokyoJapan
  2. 2.Precursory Research for Embryonic Science and TechnologyJapan Science and Technology AgencySaitamaJapan
  3. 3.DNAVEC CorporationIbarakiJapan

Personalised recommendations