Development of Vaccines Using SeV Vectors Against AIDS and Other Infectious Diseases

  • Sayuri Seki
  • Tetsuro Matano


Development of effective vaccines, essential for the control of a variety of infectious diseases, requires optimization of antigens and delivery systems. Sendai virus (SeV) vector has been recognized as a promising, novel vaccine delivery tool. We have shown the potential of a recombinant SeV vector vaccine to efficiently induce antigen-specific cytotoxic T-lymphocyte (CTL) responses, leading to control of viral replication in a macaque AIDS model. An international collaborative project toward a clinical trial of an AIDS vaccine using SeV vectors is now proceeding. This vector with the potential to efficiently induce CTL as well as antibody responses would be useful for vaccines against a large variety of infectious diseases.


Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Simian Immunodeficiency Virus Human Immunodeficiency Virus Prevalence Simian Immunodeficiency Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen TM, Vogel TU, Fuller DH, Mothé BR, Steffen S, Boyson JE, Shipley T, Fuller J, Hanke T, Sette A, Altman JD, Moss B, McMichael AJ, Watkins DI (2000) Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen. J Immunol 164(9):4968–4978, PubMedGoogle Scholar
  2. Amara RR, Villinger F, Altman JD, Lydy SL, O’Neil SP, Staprans SI, Montefiori DC, Xu Y, Herndon JG, Wyatt LS, Candido MA, Kozyr NL, Earl PL, Smith JM, Ma HL, Grimm BD, Hulsey ML, Miller J, McClure HM, McNicholl JM, Moss B, Robinson HL (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292:69–74. doi: 10.1126/science.292.5514.69 PubMedGoogle Scholar
  3. Barouch DH, Santra S, Schmitz JE, Kuroda MJ, Fu TM, Wagner W, Bilska M, Craiu A, Zheng XX, Krivulka GR, Beaudry K, Lifton MA, Nickerson CE, Trigona WL, Punt K, Freed DC, Guan L, Dubey S, Casimiro D, Simon A, Davies ME, Chastain M, Strom TB, Gelman RS, Montefiori DC, Lewis MG, Emini EA, Shiver JW, Letvin NL (2000) Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290:486–492. doi: 10.1126/science.290.5491.486 PubMedGoogle Scholar
  4. Barouch DH, O’Brien KL, Simmons NL, King SL, Abbink P, Maxfield LF, Sun YH, La Porte A, Riggs AM, Lynch DM, Clark SL, Backus K, Perry JR, Seaman MS, Carville A, Mansfield KG, Szinger JJ, Fischer W, Muldoon M, Korber B (2010) Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med 16(3):319–323. doi: 10.1038/nm.2089 PubMedCentralPubMedGoogle Scholar
  5. Basombrio MA (1990) Trypanosoma cruzi: partial prevention of the natural infection of guinea pigs with a killed parasite vaccine. Exp Parasitol 71(1):1–8. doi: 10.1016/0014-4894(90)90002-T PubMedGoogle Scholar
  6. Bejon P, Mwacharo J, Kai OK, Todryk S, Keating S, Lang T, Gilbert SC, Peshu N, Marsh K, Hill AV (2006) Immunogenicity of the candidate malaria vaccines FP9 and modified vaccinia virus Ankara encoding the pre-erythrocytic antigen ME-TRAP in 1- to 6-year-old children in a malaria endemic area. Vaccine 24(22):4709–4715. doi: 10.1016/j.vaccine.2006.03.029 PubMedGoogle Scholar
  7. Belyakov IM, Hel Z, Kelsall B, Kuznetsov VA, Ahlers JD, Nacsa J, Watkins DI, Allen TM, Sette A, Altman J, Woodward R, Markham PD, Clements JD, Franchini G, Strober W, Berzofsky JA (2001) Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nat Med 7:1320–1326. doi: 10.1038/nm1201-1320 PubMedGoogle Scholar
  8. Berman PW, Gregory TJ, Riddle L, Nakamura GR, Champe MA, Porter JP, Wurm FM, Hershberg RD, Cobb EK, Eichberg JW (1990) Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gp120 but not gp160. Nature (Lond) 345:622–625. doi: 10.1038/345622a0 Google Scholar
  9. Berman PW, Gray AM, Wrin T, Vennari JC, Eastman DJ, Nakamura GR, Francis DP, Gorse G, Schwartz DH (1997) Genetic and immunologic characterization of viruses infecting MN-rgp120-vaccinated volunteers. J Infect Dis 176:384–397. doi: 10.1086/514055 PubMedGoogle Scholar
  10. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB (1994) Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68:6103–6110, PubMedCentralPubMedGoogle Scholar
  11. Boscardin SB, Kinoshita SS, Fujimura AE, Rodrigues MM (2003) Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection. Infect Immun 71(5):2744–2757. doi: 10.1128/IAI.71.5.2744-2757.2003 PubMedCentralPubMedGoogle Scholar
  12. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, McElrath MJ, Casimiro DR, Gottesdiener KM, Chodakewitz JA, Corey L, Robertson MN, Step Study Protocol Team (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the step study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372(9653):1881–1893. doi: 10.1016/S0140-6736(08)61591-3 PubMedCentralPubMedGoogle Scholar
  13. Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, Nabel GJ, Sodroski J, Wilson IA, Wyatt RT (2004) HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5:233–236. doi: 10.1038/ni0304-233 PubMedGoogle Scholar
  14. Burton DR et al (2010) Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. J Virol 84:10510–10521PubMedCentralPubMedGoogle Scholar
  15. Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 71:3031–3038, PubMedCentralPubMedGoogle Scholar
  16. Casimiro DR, Wang F, Schleif WA, Liang X, Zhang ZQ, Tobery TW, Davies ME, McDermott AB, O’Connor DH, Fridman A, Bagchi A, Tussey LG, Bett AJ, Finnefrock AC, Fu TM, Tang A, Wilson KA, Chen M, Perry HC, Heidecker GJ, Freed DC, Carella A, Punt KS, Sykes KJ, Huang L, Ausensi VI, Bachinsky M, Sadasivan-Nair U, Watkins DI, Emini EA, Shiver JW (2005) Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with DNA and recombinant adenoviral vaccine vectors expressing gag. J Virol 79(24):15547–15555. doi: 10.1128/JVI.79.24.15547-15555.2005 PubMedCentralPubMedGoogle Scholar
  17. Cazorla SI, Frank FM, Becker PD, Corral RS, Guzmán CA, Malchiodi EL (2008) Prime-boost immunization with cruzipain co-administered with MALP-2 triggers a protective immune response able to decrease parasite burden and tissue injury in an experimental Trypanosoma cruzi infection model. Vaccine 26(16):1999–2009. doi: 10.1016/j.vaccine.2008.02.011 PubMedGoogle Scholar
  18. Chen L, Kwon YD, Zhou T, Wu X, O’Dell S, Cavacini L, Hessell AJ, Pancera M, Tang M, Xu L, Yang ZY, Zhang MY, Arthos J, Burton DR, Dimitrov DS, Nabel GJ, Posner MR, Sodroski J, Wyatt R, Mascola JR, Kwong PD (2009) Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326:1123–1127. doi: 10.1126/science.1175868 PubMedCentralPubMedGoogle Scholar
  19. Chou B, Hisaeda H, Shen J, Duan X, Imai T, Tu L, Murata S, Tanaka K, Himeno K (2008) Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes Infect 10(3):241–250. doi: 10.1016/j.micinf.2007.11.010 PubMedGoogle Scholar
  20. Costa F, Franchin G, Pereira-Chioccola VL, Ribeirão M, Schenkman S, Rodrigues MM (1998) Immunization with a plasmid DNA containing the gene of trans-sialidase reduces Trypanosoma cruzi infection in mice. Vaccine 16(8):768–774. doi: 10.1016/S0264-410X(97)00277-6 PubMedGoogle Scholar
  21. Coura JR (2007) Chagas disease: what is known and what is needed–a background article. Mem Inst Oswaldo Cruz 102(suppl 1):113–122. doi: 10.1590/S0074-02762007000900018 PubMedGoogle Scholar
  22. Duan X, Yonemitsu Y, Chou B, Yoshida K, Tanaka S, Hasegawa M, Tetsutani K, Ishida H, Himeno K, Hisaeda H (2009) Efficient protective immunity against Trypanosoma cruzi infection after nasal vaccination with recombinant Sendai virus vector expressing amastigote surface protein-2. Vaccine 27(44):6154–6159. doi: 10.1016/j.vaccine.2009.08.026 PubMedGoogle Scholar
  23. Duerr A, Huang Y, Buchbinder S, Coombs RW, Sanchez J, Del Rio C, Casapia M, Santiago S, Gilbert P, Corey L, Robertson MN, Step/HVTN 504 Study Team (2012) Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (step study). J Infect Dis 206(2):258–266. doi: 10.1093/infdis/jis342 PubMedGoogle Scholar
  24. Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ (2004) Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect Immun 72(1):46–53. doi: 10.1128/IAI.72.1.46-53.2004 PubMedCentralPubMedGoogle Scholar
  25. Egan MA, Pavlat WA, Tartaglia J, Paoletti E, Weinhold KJ, Clements ML, Siliciano RF (1995) Induction of human immunodeficiency virus type 1 (HIV-1)-specific cytolytic T lymphocyte responses in seronegative adults by a nonreplicating, host-range-restricted canarypox vector (ALVAC) carrying the HIV-1MN.env gene. J Infect Dis 171:1623–1627. doi: 10.1093/infdis/171.6.1623 PubMedGoogle Scholar
  26. Emini EA, Schleif WA, Nunberg JH, Conley AJ, Eda Y, Tokiyoshi S, Putney SD, Matsushita S, Cobb KE, Jett CM, Eichberg JW, Murthy KK (1992) Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature (Lond) 355:728–730. doi: 10.1038/355728a0 Google Scholar
  27. Feinberg MB, Moore JP (2002) AIDS vaccine models: challenging challenge viruses. Nat Med 8(3):207–210. doi: 10.1038/nm0302-207 PubMedGoogle Scholar
  28. Fischer W, Perkins S, Theiler J, Bhattacharya T, Yusim K, Funkhouser R, Kuiken C, Haynes B, Letvin NL, Walker BD, Hahn BH, Korber BT (2007) Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat Med 13(1):100–106. doi: 10.1038/nm1461 PubMedGoogle Scholar
  29. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF, rgp120 HIV Vaccine Study Group (2005) Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis 191(5):654–665. doi: 10.1086/428404 PubMedGoogle Scholar
  30. Fralish BH, Tarleton RL (2003) Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine 21(21–22):3070–3080. doi: 10.1016/S0264-410X(03)00121-X PubMedGoogle Scholar
  31. Fujimura AE, Kinoshita SS, Pereira-Chioccola VL, Rodrigues MM (2001) DNA sequences encoding CD4+ and CD8+ T-cell epitopes are important for efficient protective immunity induced by DNA vaccination with a Trypanosoma cruzi gene. Infect Immun 69(9):5477–5486. doi: 10.1128/IAI.69.9.5477-5486.2001 PubMedCentralPubMedGoogle Scholar
  32. Fultz PN (1992) Immunization and challenge of chimpanzees with HIV-1. AIDS Res Hum Retroviruses 8:1517–1519. doi: 10.1089/aid.1992.8.1517 PubMedGoogle Scholar
  33. Garg N, Tarleton RL (2002) Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infect Immun 70(10):5547–5555. doi: 10.1128/IAI.70.10.5547-5555.2002 PubMedCentralPubMedGoogle Scholar
  34. Gilbert PB, Peterson ML, Follmann D, Hudgens MG, Francis DP, Gurwith M, Heyward WL, Jobes DV, Popovic V, Self SG, Sinangil F, Burke D, Berman PW (2005) Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. J Infect Dis 191(5):666–677. doi: 10.1086/428405 PubMedGoogle Scholar
  35. Girard M, Meignier B, Barré-Sinoussi F, Kieny MP, Matthews T, Muchmore E, Nara PL, Wei Q, Rimsky L, Weinhold K (1995) Vaccine-induced protection of chimpanzees against infection by a heterologous human immunodeficiency virus type 1. J Virol 69:6239–6248, PubMedCentralPubMedGoogle Scholar
  36. Girard M, van der Ryst E, Barré-Sinoussi F, Nara P, Tartaglia J, Paoletti E, Blondeau C, Jennings M, Verrier F, Meignier B, Fultz PN (1997) Challenge of chimpanzees immunized with a recombinant canarypox–HIV-1 virus. Virology 232:98–104. doi: 10.1006/viro.1997.8560 PubMedGoogle Scholar
  37. Goulder PJ, Watkins DI (2004) HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4(8):630–640. doi: 10.1038/nri1417 PubMedGoogle Scholar
  38. Greenough TC, Cunningham CK, Muresan P, McManus M, Persaud D, Fenton T, Barker P, Gaur A, Panicali D, Sullivan JL, Luzuriaga K, Pediatric AIDS Clinical Trials Group P1059 Team (2008) Safety and immunogenicity of recombinant poxvirus HIV-1 vaccines in young adults on highly active antiretroviral therapy. Vaccine 26(52):6883–6893. doi: 10.1016/j.vaccine.2008.09.084 PubMedCentralPubMedGoogle Scholar
  39. Haigwood NL, Watson A, Sutton WF, McClure J, Lewis A, Ranchalis J, Travis B, Voss G, Letvin NL, Hu SL, Hirsch VM, Johnson PR (1996) Passive immune globulin therapy in the SIV/macaque model: early intervention can alter disease profile. Immunol Lett 51:107–114. doi: 10.1016/0165-2478(96)02563-1 PubMedGoogle Scholar
  40. Hanke T, Samuel RV, Blanchard TJ, Neumann VC, Allen TM, Boyson JE, Sharpe SA, Cook N, Smith GL, Watkins DI, Cranage MP, McMichael AJ (1999) Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J Virol 73(9):7524–7532, PubMedCentralPubMedGoogle Scholar
  41. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, Whizin N, Oswald K, Shoemaker R, Swanson T, Legasse AW, Chiuchiolo MJ, Parks CL, Axthelm MK, Nelson JA, Jarvis MA, Piatak M Jr, Lifson JD, Picker LJ (2011) Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature (Lond) 473(7348):523–527. doi: 10.1038/nature10003 Google Scholar
  42. Hara H, Hironaka T, Inoue M, Iida A, Shu T, Hasegawa M, Nagai Y, Falsey AR, Kamali A, Anzala O, Sanders EJ, Karita E, Mwananyanda L, Vasan S, Lombardo A, Parks CL, Sayeed E, Krebs M, Cormier E, Ackland J, Price MA, Excler JL (2011) Prevalence of specific neutralizing antibodies against Sendai virus in populations from different geographic areas: implications for AIDS vaccine development using Sendai virus vectors. Hum Vaccin 7(6):639–645. doi: 10.4161/hv.7.6.15408 PubMedGoogle Scholar
  43. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, Evans DT, Montefiori DC, Karnasuta C, Sutthent R, Liao HX, DeVico AL, Lewis GK, Williams C, Pinter A, Fong Y, Janes H, DeCamp A, Huang Y, Rao M, Billings E, Karasavvas N, Robb ML, Ngauy V, de Souza MS, Paris R, Ferrari G, Bailer RT, Soderberg KA, Andrews C, Berman PW, Frahm N, De Rosa SC, Alpert MD, Yates NL, Shen X, Koup RA, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Rerks-Ngarm S, Michael NL, Kim JH (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 366(14):1275–1286, 10.1056/NEJMoa1113425 PubMedCentralPubMedGoogle Scholar
  44. Horton H, Vogel TU, Carter DK, Vielhuber K, Fuller DH, Shipley T, Fuller JT, Kunstman KJ, Sutter G, Montefiori DC, Erfle V, Desrosiers RC, Wilson N, Picker LJ, Wolinsky SM, Wang C, Allison DB, Watkins DI (2002) Immunization of rhesus macaques with a DNA prime/modified vaccinia virus Ankara boost regimen induces broad simian immunodeficiency virus (SIV)-specific T-cell responses and reduces initial viral replication but does not prevent disease progression following challenge with pathogenic SIVmac239. J Virol 76:7187–7202. doi: 10.1128/JVI.76.14.7187-7202.2002 PubMedCentralPubMedGoogle Scholar
  45. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698, 10.1056/NEJMoa0802905 PubMedGoogle Scholar
  46. Ishii H, Kawada M, Tsukamoto T, Yamamoto H, Matsuoka S, Shiino T, Takeda A, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Naruse TK, Kimura A, Takiguchi M, Matano T (2012) Impact of vaccination on cytotoxic T lymphocyte immunodominance and cooperation against simian immunodeficiency virus replication in rhesus macaques. J Virol 86:738–745. doi: 10.1128/JVI.06226-11 PubMedCentralPubMedGoogle Scholar
  47. Kano M, Matano T, Nakamura H, Takeda A, Kato A, Ariyoshi K, Mori K, Sata T, Nagai Y (2000) Elicitation of protective immunity against simian immunodeficiency virus infection by a recombinant Sendai virus expressing the Gag protein. AIDS 14(9):1281–1282. doi: 10.1097/00002030-200006160-00030 PubMedGoogle Scholar
  48. Kano M, Matano T, Kato A, Nakamura H, Takeda A, Suzaki Y, Ami Y, Terao K, Nagai Y (2002) Primary replication of a recombinant Sendai viral vector in macaques. J Gen Virol 83:1377–1386PubMedGoogle Scholar
  49. Katae M, Miyahira Y, Takeda K, Matsuda H, Yagita H, Okumura K, Takeuchi T, Kamiyama T, Ohwada A, Fukuchi Y, Aoki T (2002) Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infect Immun 70(9):4833–4840. doi: 10.1128/IAI.70.9.4833-4840.2002 PubMedCentralPubMedGoogle Scholar
  50. Kawada M, Igarashi H, Takeda A, Tsukamoto T, Yamamoto H, Dohki S, Takiguchi M, Matano T (2006) Involvement of multiple epitope-specific cytotoxic T-lymphocyte responses in vaccine-based control of simian immunodeficiency virus replication in rhesus macaques. J Virol 80(4):1949–1958. doi: 10.1128/JVI.80.4.1949-1958.2006 PubMedCentralPubMedGoogle Scholar
  51. Kawada M, Tsukamoto T, Yamamoto H, Takeda A, Igarashi H, Watkins DI, Matano T (2007) Long-term control of simian immunodeficiency virus replication with central memory CD4+ T-cell preservation after nonsterile protection by a cytotoxic T-lymphocyte-based vaccine. J Virol 81(10):5202–5211. doi: 10.1128/JVI.02881-06 PubMedCentralPubMedGoogle Scholar
  52. Kawada M, Tsukamoto T, Yamamoto H, Iwamoto N, Kurihara K, Takeda A, Moriya C, Takeuchi H, Akari H, Matano T (2008) Gag-specific cytotoxic T lymphocyte-based control of primary simian immunodeficiency virus replication in a vaccine trial. J Virol 82:10199–10206. doi: 10.1128/JVI.01103-08 PubMedCentralPubMedGoogle Scholar
  53. Kent SJ, Zhao A, Best SJ, Chandler JD, Boyle DB, Ramshaw IA (1998) Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J Virol 72:10180–10188, PubMedCentralPubMedGoogle Scholar
  54. Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E, Reddy S, de Pierres C, Mncube Z, Mkhwanazi N, Bishop K, van der Stok M, Nair K, Khan N, Crawford H, Payne R, Leslie A, Prado J, Prendergast A, Frater J, McCarthy N, Brander C, Learn GH, Nickle D, Rousseau C, Coovadia H, Mullins JI, Heckerman D, Walker BD, Goulder P (2007) CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13(1):46–53. doi: 10.1038/nm1520 PubMedGoogle Scholar
  55. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, Farthing C, Ho DD (1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68:4650–4655, PubMedCentralPubMedGoogle Scholar
  56. Kurihara K, Takahara Y, Nomura T, Ishii H, Iwamoto N, Takahashi N, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Moriya C, Matano T (2012) Immunogenicity of repeated Sendai viral vector vaccination in macaques. Microbes Infect 14:1169–1176. doi: 10.1016/j.micinf.2012.07.016 PubMedGoogle Scholar
  57. Kwong PD, Doyle ML, Casper DJ, Cicala C, Leavitt SA, Majeed S, Steenbeke TD, Venturi M, Chaiken I, Fung M, Katinger H, Parren PW, Robinson J, Van Ryk D, Wang L, Burton DR, Freire E, Wyatt R, Sodroski J, Hendrickson WA, Arthos J (2002) HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature (Lond) 420:678–682. doi: 10.1038/nature01188 Google Scholar
  58. Létourneau S, Im EJ, Mashishi T, Brereton C, Bridgeman A, Yang H, Dorrell L, Dong T, Korber B, McMichael AJ, Hanke T (2007) Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2(10):e984. doi: 10.1371/annotation/fca26a4f-42c1-4772-a19e-aa9d96c4eeb2 PubMedCentralPubMedGoogle Scholar
  59. Letvin NL, Mascola JR, Sun Y, Gorgone DA, Buzby AP, Xu L, Yang ZY, Chakrabarti B, Rao SS, Schmitz JE, Montefiori DC, Barker BR, Bookstein FL, Nabel GJ (2006) Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science 312(5779):1530–1533. doi: 10.1126/science.1124226 PubMedCentralPubMedGoogle Scholar
  60. Li HO, Zhu YF, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee YS, Fukumura M, Iida A, Kato A, Nagai Y, Hasegawa M (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74(14):6564–6569. doi: 10.1128/JVI.74.14.6564-6569.2000 PubMedCentralPubMedGoogle Scholar
  61. Li Y, Migueles SA, Welcher B, Svehla K, Phogat A, Louder MK, Wu X, Shaw GM, Connors M, Wyatt RT, Mascola JR (2007) Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 13(9):1032–1034. doi: 10.1038/nm1624 PubMedCentralPubMedGoogle Scholar
  62. Liu J, O’Brien KL, Lynch DM, Simmons NL, La Porte A, Riggs AM, Abbink P, Coffey RT, Grandpre LE, Seaman MS, Landucci G, Forthal DN, Montefiori DC, Carville A, Mansfield KG, Havenga MJ, Pau MG, Goudsmit J, Barouch DH (2009) Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature (Lond) 457:87–91. doi: 10.1038/nature07469 Google Scholar
  63. Lubeck MD, Natuk R, Myagkikh M, Kalyan N, Aldrich K, Sinangil F, Alipanah S, Murthy SC, Chanda PK, Nigida SM Jr, Markham PD, Zolla-Pazner S, Steimer K, Wade M, Reitz MS Jr, Arthur LO, Mizutani S, Davis A, Hung PP, Gallo RC, Eichberg J, Robert-Guroff M (1997) Long-term protection of chimpanzees against high-dose HIV-1 challenge induced by immunization. Nat Med 3:651–658. doi: 10.1038/nm0697-651 PubMedGoogle Scholar
  64. Machado AV, Cardoso JE, Claser C, Rodrigues MM, Gazzinelli RT, Bruna-Romero O (2006) Long-term protective immunity induced against Trypanosoma cruzi infection after vaccination with recombinant adenoviruses encoding amastigote surface protein-2 and trans-sialidase. Hum Gene Ther 17(9):898–908. doi: 10.1089/hum.2006.17.898 PubMedGoogle Scholar
  65. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D, Louder MK, Brown CR, Sapan CV, Frankel SS, Lu Y, Robb ML, Katinger H, Birx DL (1999) Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73:4009–4018, PubMedCentralPubMedGoogle Scholar
  66. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, Beary H, Hayes D, Frankel SS, Birx DL, Lewis MG (2000) Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 6:207–210. doi: 10.1038/72318 PubMedGoogle Scholar
  67. Matano T, Shibata R, Siemon C, Connors M, Lane HC, Martin MA (1998) Administration of an anti-CD8 monoclonal antibody interferes with the clearance of SIV/HIV chimeric virus during primary infections of rhesus macaques. J Virol 72:164–169, PubMedCentralPubMedGoogle Scholar
  68. Matano T, Kano M, Nakamura H, Takeda A, Nagai Y (2001) Rapid appearance of secondary immune responses and protection from acute CD4 depletion after a highly pathogenic immunodeficiency virus challenge in macaques vaccinated with a DNA-prime/Sendai viral vector-boost regimen. J Virol 75:11891–11896. doi: 10.1128/JVI.75.23.11891-11896.2001 PubMedCentralPubMedGoogle Scholar
  69. Matano T, Kobayashi M, Igarashi H, Takeda A, Nakamura H, Kano M, Sugimoto C, Mori K, Iida A, Hirata T, Hasegawa M, Yuasa T, Miyazawa M, Takahashi Y, Yasunami M, Kimura A, O’Connor DH, Watkins DI, Nagai Y (2004) Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial. J Exp Med 199(12):1709–1718. doi: 10.1084/jem.20040432 PubMedCentralPubMedGoogle Scholar
  70. McMichael A (1998) T cell responses and viral escape. Cell 93:673–676. doi: 10.1016/S0092-8674(00)81428-2 PubMedGoogle Scholar
  71. McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, Fletcher HA, Hill AV (2004) Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 10(11):1240–1244. doi: 10.1038/nm1128 PubMedGoogle Scholar
  72. Menezes H (1968) Protective effect of an avirulent (cultivated) strain of Trypanosoma cruzi against experimental infection in mice. Rev Inst Med Trop Sao Paulo 10(1):1–4PubMedGoogle Scholar
  73. Moore JP, Cao Y, Qing L, Sattentau QJ, Pyati J, Koduri R, Robinson J, Barbas CF 3rd, Burton DR, Ho DD (1995) Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol 69:101–109, PubMedCentralPubMedGoogle Scholar
  74. Moore JP, Parren PW, Burton DR (2001) Genetic subtypes, humoral immunity, and human immunodeficiency virus type 1 vaccine development. J Virol 75:5721–5729. doi: 10.1128/JVI.75.13.5721-5729.2001 PubMedCentralPubMedGoogle Scholar
  75. Moriya C, Horiba S, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Matano T (2008) Antigen-specific T-cell induction by vaccination with a recombinant Sendai virus vector even in the presence of vector-specific neutralizing antibodies in rhesus macaques. Biochem Biophys Res Commun 371(4):850–854. doi: 10.1016/j.bbrc.2008.04.156 PubMedGoogle Scholar
  76. Moriya C, Horiba S, Kurihara K, Kamada T, Takahara Y, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Matano T (2011) Intranasal Sendai viral vector vaccination is more immunogenic than intramuscular under pre-existing anti-vector antibodies. Vaccine 29(47):8557–8563. doi: 10.1016/j.vaccine.2011.09.028 PubMedGoogle Scholar
  77. Mossman SP, Bex F, Berglund P, Arthos J, O’Neil SP, Riley D, Maul DH, Bruck C, Momin P, Burny A, Fultz PN, Mullins JI, Liljeström P, Hoover EA (1996) Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki Forest virus gp160 vaccine and by a gp120 subunit vaccine. J Virol 70:1953–1960, PubMedCentralPubMedGoogle Scholar
  78. Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA 97(16):9026–9031. doi: 10.1073/pnas.97.16.9026 PubMedGoogle Scholar
  79. Naruse TK, Chen Z, Yanagida R, Yamashita T, Saito Y, Mori K, Akari H, Yasutomi Y, Miyazawa M, Matano T, Kimura A (2010) Diversity of MHC class I genes in Burmese-origin rhesus macaques. Immunogenetics 62:601–611. doi: 10.1007/s00251-010-0462-z PubMedGoogle Scholar
  80. Nishimura Y, Igarashi T, Haigwood NL, Sadjadpour R, Donau OK, Buckler C, Plishka RJ, Buckler-White A, Martin MA (2003) Transfer of neutralizing IgG to macaques 6 h but not 24 h after SHIV infection confers sterilizing protection: implications for HIV-1 vaccine development. Proc Natl Acad Sci USA 100:15131–15136. doi: 10.1073/pnas.2436476100 PubMedGoogle Scholar
  81. Nomura T, Yamamoto H, Shiino T, Takahashi N, Nakane T, Iwamoto N, Ishii H, Tsukamoto T, Kawada M, Matsuoka S, Takeda A, Terahara K, Tsunetsugu-Yokota Y, Iwata-Yoshikawa N, Hasegawa H, Sata T, Naruse TK, Kimura A, Matano T (2012) Association of major histocompatibility complex class I haplotypes with disease progression after simian immunodeficiency virus challenge in Burmese rhesus macaques. J Virol 86:6481–6490. doi: 10.1128/JVI.07077-11 PubMedCentralPubMedGoogle Scholar
  82. Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J, Cheng-Mayer C, Moore JP, Burton DR (2001) Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 75:8340–8347. doi: 10.1128/JVI.75.17.8340-8347.2001 PubMedCentralPubMedGoogle Scholar
  83. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, van Griensven F, Hu D, Tappero JW, Choopanya K, Bangkok Vaccine Evaluation Group (2006) Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis 194(12):1661–1671. doi: 10.1086/508748 PubMedGoogle Scholar
  84. Reitter JN, Means RE, Desrosiers RC (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4:679–684. doi: 10.1038/nm0698-679 PubMedGoogle Scholar
  85. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH, MOPH-TAVEG Investigators (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361(23):2209–2220, 10.1056/NEJMoa0908492 PubMedGoogle Scholar
  86. Richman DD, Wrin T, Little SJ, Petropoulos CJ (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 100:4144–4149. doi: 10.1073/pnas.0630530100 PubMedGoogle Scholar
  87. Rolland M, Nickle DC, Mullins JI (2007) HIV-1 group M conserved elements vaccine. PLoS Pathog 3(11):e157. doi: 10.1371/journal.ppat.0030157 PubMedCentralPubMedGoogle Scholar
  88. Rolland M, Tovanabutra S, deCamp AC, Frahm N, Gilbert PB, Sanders-Buell E, Heath L, Magaret CA, Bose M, Bradfield A, O’Sullivan A, Crossler J, Jones T, Nau M, Wong K, Zhao H, Raugi DN, Sorensen S, Stoddard JN, Maust BS, Deng W, Hural J, Dubey S, Michael NL, Shiver J, Corey L, Li F, Self SG, Kim J, Buchbinder S, Casimiro DR, Robertson MN, Duerr A, McElrath MJ, McCutchan FE, Mullins JI (2011) Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat Med 17(3):366–371. doi: 10.1038/nm.2316 PubMedCentralPubMedGoogle Scholar
  89. Rose NF, Marx PA, Luckay A, Nixon DF, Moretto WJ, Donahoe SM, Montefiori D, Roberts A, Buonocore L, Rose JK (2001) An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 106:539–549. doi: 10.1016/S0092-8674(01)00482-2 PubMedGoogle Scholar
  90. Santra S, Liao HX, Zhang R, Muldoon M, Watson S, Fischer W, Theiler J, Szinger J, Balachandran H, Buzby A, Quinn D, Parks RJ, Tsao CY, Carville A, Mansfield KG, Pavlakis GN, Felber BK, Haynes BF, Korber BT, Letvin NL (2010) Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nat Med 16(3):324–328. doi: 10.1038/nm.2108 PubMedCentralPubMedGoogle Scholar
  91. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TY, Pietzsch J, Fenyo D, Abadir A, Velinzon K, Hurley A, Myung S, Boulad F, Poignard P, Burton DR, Pereyra F, Ho DD, Walker BD, Seaman MS, Bjorkman PJ, Chait BT, Nussenzweig MC (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333(6049):1633–1637. doi: 10.1126/science.1207227 PubMedCentralPubMedGoogle Scholar
  92. Shibata R, Igarashi T, Haigwood N, Buckler-White A, Ogert R, Ross W, Willey R, Cho MW, Martin MA (1999) Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat Med 5:204–210. doi: 10.1038/5568 PubMedGoogle Scholar
  93. Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, Evans RK, Zhang ZQ, Simon AJ, Trigona WL, Dubey SA, Huang L, Harris VA, Long RS, Liang X, Handt L, Schleif WA, Zhu L, Freed DC, Persaud NV, Guan L, Punt KS, Tang A, Chen M, Wilson KA, Collins KB, Heidecker GJ, Fernandez VR, Perry HC, Joyce JG, Grimm KM, Cook JC, Keller PM, Kresock DS, Mach H, Troutman RD, Isopi LA, Williams DM, Xu Z, Bohannon KE, Volkin DB, Montefiori DC, Miura A, Krivulka GR, Lifton MA, Kuroda MJ, Schmitz JE, Letvin NL, Caulfield MJ, Bett AJ, Youil R, Kaslow DC, Emini EA (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature (Lond) 415:331–335. doi: 10.1038/415331a Google Scholar
  94. Slobod KS, Shenep JL, Luján-Zilbermann J, Allison K, Brown B, Scroggs RA, Portner A, Coleclough C, Hurwitz JL (2004) Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine 22(23–24):3182–3186. doi: 10.1016/j.vaccine.2004.01.053 PubMedGoogle Scholar
  95. Stamatatos L, Morris L, Burton DR, Mascola JR (2009) Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med 15(8):866–870. doi: 10.1038/nm.1949 PubMedGoogle Scholar
  96. Takeda A, Igarashi H, Nakamura H, Kano M, Iida A, Hirata T, Hasegawa M, Nagai Y, Matano T (2003) Protective efficacy of an AIDS vaccine, a single DNA-prime followed by a single booster with a recombinant replication-defective Sendai virus vector, in a macaque AIDS model. J Virol 77:9710–9715. doi: 10.1128/JVI.77.17.9710-9715.2003 PubMedCentralPubMedGoogle Scholar
  97. Takeda A, Igarashi H, Kawada M, Tsukamoto T, Yamamoto H, Inoue M, Iida A, Shu T, Hasegawa M, Matano T (2008) Evaluation of the immunogenicity of replication-competent V-knocked-out and replication-defective F-deleted Sendai virus vector-based vaccines in macaques. Vaccine 26:6839–6843. doi: 10.1016/j.vaccine.2008.09.074 PubMedGoogle Scholar
  98. Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–968. doi: 10.1016/0092-8674(86)90019-X PubMedGoogle Scholar
  99. Trkola A, Kuster H, Rusert P, Joos B, Fischer M, Leemann C, Manrique A, Huber M, Rehr M, Oxenius A, Weber R, Stiegler G, Vcelar B, Katinger H, Aceto L, Günthard HF (2005) Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 11:615–622. doi: 10.1038/nm1244 PubMedGoogle Scholar
  100. Tsukamoto T, Takeda A, Yamamoto T, Yamamoto H, Kawada M, Matano T (2009) Impact of cytotoxic-T-lymphocyte memory induction without virus-specific CD4+ T-cell help on control of a simian immunodeficiency virus challenge in rhesus macaques. J Virol 83:9339–9346PubMedCentralPubMedGoogle Scholar
  101. Vasconcelos JR, Hiyane MI, Marinho CR, Claser C, Machado AM, Gazzinelli RT, Bruña-Romero O, Alvarez JM, Boscardin SB, Rodrigues MM (2004) Protective immunity against Trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and trans-sialidase. Hum Gene Ther 15(9):878–886. doi: 10.1089/hum.2004.15.878 PubMedGoogle Scholar
  102. Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, Hu Q, Ketas T, Marx PA, Klasse PJ, Burton DR, Moore JP (2003) Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 9:343–346. doi: 10.1038/nm833 PubMedGoogle Scholar
  103. Walker LM, Simek MD, Priddy F, Gach JS, Wagner D, Zwick MB, Phogat SK, Poignard P, Burton DR (2010) A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1 infected individuals. PLoS Pathog 6(8):e1001028. doi: 10.1371/journal.ppat.1001028 PubMedCentralPubMedGoogle Scholar
  104. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD, Koff WC, Wilson IA, Burton DR, Poignard P (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature (Lond) 477(7365):466–470. doi: 10.1038/nature10373 Google Scholar
  105. Webster DP, Dunachie S, McConkey S, Poulton I, Moore AC, Walther M, Laidlaw SM, Peto T, Skinner MA, Gilbert SC, Hill AV (2006) Safety of recombinant fowlpox strain FP9 and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine 24(15):3026–3034. doi: 10.1016/j.vaccine.2005.10.058 PubMedGoogle Scholar
  106. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM (2003) Antibody neutralization and escape by HIV-1. Nature (Lond) 422:307–312. doi: 10.1038/nature01470 Google Scholar
  107. Wilson NA, Reed J, Napoe GS, Piaskowski S, Szymanski A, Furlott J, Gonzalez EJ, Yant LJ, Maness NJ, May GE, Soma T, Reynolds MR, Rakasz E, Rudersdorf R, McDermott AB, O’Connor DH, Friedrich TC, Allison DB, Patki A, Picker LJ, Burton DR, Lin J, Huang L, Patel D, Heindecker G, Fan J, Citron M, Horton M, Wang F, Liang X, Shiver JW, Casimiro DR, Watkins DI (2006) Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239. J Virol 80(12):5875–5885. doi: 10.1128/JVI.00171-06 PubMedCentralPubMedGoogle Scholar
  108. Wizel B, Garg N, Tarleton RL (1998) Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection. Infect Immun 66(11):5073–5081, PubMedCentralPubMedGoogle Scholar
  109. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, Chen X, Longo NS, Louder M, McKee K, O’Dell S, Perfetto S, Schmidt SD, Shi W, Wu L, Yang Y, Yang ZY, Yang Z, Zhang Z, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Simek M, Burton DR, Koff WC, Doria-Rose NA, Connors M, NISC Comparative Sequencing Program, Mullikin JC, Nabel GJ, Roederer M, Shapiro L, Kwong PD, Mascola JR (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333(6049):1593–1602. doi: 10.1126/science.1207532 PubMedCentralPubMedGoogle Scholar
  110. Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG (1998) The antigenic structure of the HIV gp120 envelope glycoprotein. Nature (Lond) 393:705–711. doi: 10.1038/31514 Google Scholar
  111. Xin KQ, Urabe M, Yang J, Nomiyama K, Mizukami H, Hamajima K, Nomiyama H, Saito T, Imai M, Monahan J, Okuda K, Ozawa K, Okuda K (2001) A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther 12(9):1047–1061. doi: 10.1089/104303401750214276 PubMedGoogle Scholar
  112. Yamamoto H, Matano T (2010) Neutralizing antibodies in SIV control: co-impact with T cells. Vaccine 28S:B13–B17. doi: 10.1016/j.vaccine.2009.09.080 Google Scholar
  113. Yamamoto H, Kawada M, Takeda A, Igarashi H, Matano T (2007) Post-infection immunodeficiency virus control by neutralizing antibodies. PLoS One 2(6):e540. doi: 10.1371/journal.pone.0000540 PubMedCentralPubMedGoogle Scholar
  114. Yamamoto T, Iwamoto N, Yamamoto H, Tsukamoto T, Kuwano T, Takeda A, Kawada M, Tsunetsugu-Yokota Y, Matano T (2009) Polyfunctional CD4+ T-cell induction in neutralizing antibody-triggered control of simian immunodeficiency virus infection. J Virol 83:5514–5524. doi: 10.1128/JVI.00145-09 PubMedCentralPubMedGoogle Scholar
  115. Zhou T et al (2010) Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329:811–817. doi: 10.1126/science.1192819 PubMedCentralPubMedGoogle Scholar
  116. Zuñiga R, Lucchetti A, Galvan P, Sanchez S, Sanchez C, Hernandez A, Sanchez H, Frahm N, Linde CH, Hewitt HS, Hildebrand W, Altfeld M, Allen TM, Walker BD, Korber BT, Leitner T, Sanchez J, Brander C (2006) Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J Virol 80(6):3122–3125. doi: 10.1128/JVI.80.6.3122-3125.2006 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.AIDS Research CenterNational Institute of Infectious DiseasesTokyoJapan
  2. 2.The Institute of Medical ScienceThe University of TokyoTokyoJapan

Personalised recommendations