Skip to main content

Concept and Technology Underlying Sendai Virus (SeV) Vector Development

  • Chapter
  • First Online:
Sendai Virus Vector

Abstract

Sendai virus (SeV) reverse genetics, hatched out of pure academic need, is developing into the leading-edge biotechnology of a nonintegrating, cytoplasmic RNA vector. Diverse applications of the SeV vector are now in the pipeline and are poised for clinical testing. Here, we describe the conceptual novelty of the SeV vector and the technology used to accommodate a foreign gene of interest into the full-length SeV genome. This technology has advanced further to the generation of non-transmissible safer vector versions. Moreover, the incorporation of predetermined mutations responsible for particular phenotypes into the SeV backbone was actively conducted to produce special versions for its use in respective special settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Masuda S, Ban H, Hayashi S, Ueda Y, Inoue M, Hasegawa M, Nagao Y, Hanazono Y (2011) Ex vivo expansion of human HSCs with Sendai virus vector expressing HoxB4 assessed by sheep in utero transplantation. Exp Hematol 39(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Adachi A, Kanda T, Shibuta H (1980) Isolation and characterization of temperature-sensitive mutants of Sendai virus. Microbiol Immunol 24(11):1053–1068

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Matsumoto K, Saitoh K, Ui M, Ito T, Murakami M, Kanegae Y, Saito I, Cosset FL, Takeuchi Y, Iba H (1999) A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines. J Virol 72(2):1115–1121

    Google Scholar 

  • Armeanu S, Ungerechts G, Bernloehr C, Bossow S, Gregor M, Neubert WJ, Lauer UM, Bitzer M (2003) Cell cycle independent infection and gene transfer by recombinant Sendai viruses. J Virol Methods 108:229–233

    Article  CAS  PubMed  Google Scholar 

  • Ban H, Inoue M, Griesenbach U, Munkonge F, Chan M, Iida A, Alton EW, Hasegawa M (2007) Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein. Gene Ther 14(24):1688–1694

    Article  CAS  PubMed  Google Scholar 

  • Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA 108(34):14234–14239

    Article  CAS  PubMed  Google Scholar 

  • Bernloehr C, Bossow S, Ungerechts G, Armeanu S, Neubert WJ, Lauer UM, Bitzer M (2004) Efficient propagation of single gene deleted recombinant Sendai virus vectors. Virus Res 99(2):193–197

    Article  CAS  PubMed  Google Scholar 

  • Bitzer M, Armeanu S, Lauer UM, Neubert WJ (2003a) Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 5:543–553

    Article  CAS  PubMed  Google Scholar 

  • Bitzer M, Ungrechts G, Bossow S, Graepler F, Sedlmeier R, Ameanu S, Bernloehr C, Spiegel M (2003b) Negative-strand RNA viral vectors: intravenous application of Sendai virus vectors for the systemic delivery of therapeutic genes. Mol Ther 7:210–217

    Article  CAS  PubMed  Google Scholar 

  • Bossow S, Schlecht S, Schubbert R, Pfeiffer M, Neubert WJ, Wiegand M (2012) Evaluation of nucleocapsid and phosphoprotein P functionality as critical factors during the early phase of paramyxoviral infection. Open Virol J 6:73–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman MC, Smallwood S, Moyer SA (1999) Dissection of individual functions of the Sendai virus phosphoprotein in transcription. J Virol 73(8):6474–6483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chare ER, Gould EA, Holmes EC (2003) Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 84(Pt 10):2691–2703

    Article  CAS  PubMed  Google Scholar 

  • Conzelmann K-K (1998) Nonsegmented negative-strand RNA viruses. Annu Rev Genet 32:123–162

    Article  CAS  PubMed  Google Scholar 

  • Feller JA, Smallwood S, Skiadopoulos MH, Murphy BR, Moyer SA (2000) Comparison of identical temperature-sensitive mutations in the L polymerase proteins of Sendai and parainfluenza 3 viruses. Virology 276(1):190–201

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Griesenbach U, Shiraki-Iida T, Shu T, Hironaka T, Hou X, Williams J, Zhu J, Jeffery PK, Geddes DM, Hasegawa M, Alton EW (2004) A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Ther 11(22):1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Fuerst TR, Niles FW, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126

    Article  CAS  PubMed  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y (1990) An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J 9(12):4189–4195

    CAS  PubMed  Google Scholar 

  • Griesenbach U, Cassady RL, Ferrari S, Fukumura M, Müller C, Schmitt E, Zhu J, Jeffery PK, Nagai Y, Geddes DM, Hasegawa M, Alton EW (2002) The nasal epithelium as a factory for systemic protein delivery. Mol Ther 5(2):98–103

    Article  CAS  PubMed  Google Scholar 

  • Griesenbach U, Inoue M, Hasegawa M, Alton EWFW (2005) Sendai virus for gene therapy and vaccination. Curr Opin Mol Ther 7:346–352

    CAS  PubMed  Google Scholar 

  • Griesenbach U, Meng C, Farley R, Cheng SH, Scheule RK, Davies MH, Wolstenholme-Hogg PC, ten Hove W, van der Hoeven P, Sinn PL, McCray PB Jr, Inoue M, Geddes DM, Hasegawa M, Frankel G, Wiles S, Alton EW (2008) In vivo imaging of gene transfer to the respiratory tract. Biomaterials 29(10):1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Griesenbach U, McLachlan G, Owaki T, Somerton L, Shu T, Baker A, Tennant P, Gordon C, Vrettou C, Baker E, Collie DD, Hasegawa M, Alton EW (2011) Validation of recombinant Sendai virus in a non-natural host model. Gene Ther 18(2):182–188

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint BG, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118(9):3132–3142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara H, Hara H, Hironaka T, Inoue M, Iida A, Shu T, Hasegawa M, Nagai Y, Falsey AR, Kamali A, Anzala O, Sanders EJ, Karita E, Mwananyanda L, Vasan S, Lombardo A, Parks CL, Sayeed E, Krebs M, Cormier E, Ackland J, Price MA, Excler JL (2011) Prevalence of specific neutralizing antibodies against Sendai virus in populations from different geographic areas: implications for AIDS vaccine development using Sendai virus vectors. Hum Vaccin 7(6):639–645

    Article  PubMed  Google Scholar 

  • Hasan MK, Kato A, Shioda T, Sakai Y, Yu D, Nagai Y (1997) Creation of an infectious recombinant Sendai virus expressing the firefly luciferase from 3′ proximal first locus. J Gen Virol 78:2813–2820

    CAS  PubMed  Google Scholar 

  • Hasegawa Y, Konoh H, Iwadate Y, Onimaru M, Ueda Y, Harada Y, Saito S, Furuya A, Saegusa T, Morodomi Y, Hasegawa M, Saito S, Aoki I, Saeki N, Yonemitsu Y (2010) Urokinase-targeted fusion by oncolytic Sendai virus eradicates orthotopic glioblastomas by pronounced synergy with interferon-β gene. Mol Ther 18:1778–1786

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Iida A, Shiraki-Iida T, Kitazato K, Kato A, Nagai Y, Hasegawa M (2002) The improved method for recovery of F-defective Sendai virus expressing foreign genes from cloned cDNA. J Virol Methods 104(2):125–133

    Article  CAS  PubMed  Google Scholar 

  • Homann HE, Hofschneider PH, Neubert WJ (1990) Sendai virus gene expression in lytically and persistently infected cells. Virology 177:131–140

    Article  CAS  PubMed  Google Scholar 

  • Homma M, Ohuchi M (1973) Trypsin action on the growth of Sendai virus in tissue culture cells III. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol 12(6):1457–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda Y, Yonemitsu Y, Sakamoto T, Ishibashi T, Ueno H, Kato A, Nagai Y, Fukumura M, Inomata H, Hasegawa M, Sueishi K (2002) Recombinant Sendai virus-mediated gene transfer into adult rat retinal tissue: efficient gene transfer by brief exposure. Exp Eye Res 75(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Tokusumi Y, Ban H, Kanaya T, Tokusumi T, Nagai Y, Iida A, Hasegawa M (2003a) Non-transmissible virus-like particle formation by F-deficient Sendai virus is temperature-sensitive and reduced by mutations in M and HN proteins. J Virol 77(5):3238–3246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue M, Tokusumi Y, Ban H, Kanaya T, Shirakura M, Tokusumi T, Hirata T, Nagai Y, Iida A, Hasegawa M (2003b) A new type of Sendai virus vector deficient in the matrix gene has lost virus particle formation and gained extensive cell to cell spreading. J Virol 77(11):6419–6429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue M, Tokusumi Y, Ban H, Shirakura M, Kanaya T, Yoshizaki M, Hironaka T, Nagai Y, Iida A, Hasegawa M (2004) Recombinant Sendai virus vectors deleted in both the matrix and the fusion genes: efficient gene transfer with preferable properties. J Gene Med 6(10):1069–1081

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Iga M, Nabeta H, Yokoo T, Suehiro Y, Okano S, Inoue M, Kinoh H, Katagiri T, Takayama K, Yonemitsu Y, Hasegawa M, Nakamura Y, Nakanishi Y, Tani K (2008) Non-transmissible Sendai virus encoding granulocyte macrophage colony-stimulating factor is a novel and potent vector system for producing autologous tumor vaccines. Cancer Sci 99(11):2315–2326

    Article  CAS  PubMed  Google Scholar 

  • Iseni F, Garcin D, Nishio M, Kedersha N, Anderson P, Kolakofsky D (2002) Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis. EMBO J 21(19):5141–5150

    Article  CAS  PubMed  Google Scholar 

  • Iwadate Y, Inoue M, Saegusa T, Tokusumi Y, Kinoh H, Hasegawa M, Tagawa M, Yamaura A, Shimada H (2005) Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin Cancer Res 11(10):3821–3827

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki Y, Negishi T, Inoue M, Tashiro T, Tabira T, Kimura N (2012) Sendai virus vector-mediated brain-derived neurotrophic factor expression ameliorates memory deficits and synaptic degeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci Res 90(5):981–989

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, Nagai Y (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1:569–579

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, Nagai Y (1999) Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. J Virol 73(11):9237–9246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoh H, Inoue M, Washizawa K, Yamamoto T, Fujikawa S, Tokusumi Y, Iida A, Nagai Y, Hasegawa M (2004) Generation of a recombinant Sendai virus that selectively activated and lyse human tumor cells expressing matrix metalloproteinases. Gene Ther 11:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Kinoh H, Inoue M, Komaru A, Ueda Y, Hasegawa M, Yonemitsu Y (2009) Generation of optimized and urokinase-targeted oncolytic Sendai virus vectors applicable for various human malignancies. Gene Ther 16:392–403

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A, Matsushita K, Takiguchi Y, Shimada H, Tada Y, Yamanaka M, Hiroshima K, Tagawa M, Tomonaga T, Matsubara H, Inoue M, Hasegawa M, Sato Y, Levens D, Tatsumi K, Nomura F (2011) Synergistic effect of non-transmissible Sendai virus vector encoding the c-myc suppressor FUSE-binding protein-interacting repressor plus cisplatin in the treatment of malignant pleural mesothelioma. Cancer Sci 102(7):1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komada H, Kusagawa S, Orvell C, Tsurudome M, Nishio M, Bando H, Kawano M, Matsumura H, Norrby E, Ito Y (1992) Antigenic diversity of human parainfluenza virus type 1 isolates and their immunological relationship with Sendai virus revealed by using monoclonal antibodies. J Gen Virol 73(Pt 4):875–884

    Article  CAS  PubMed  Google Scholar 

  • Kurihara K, Takahara Y, Nomura T, Ishii H, Iwamoto N, Takahashi N, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Moriya C, Matano T (2012) Immunogenicity of repeated Sendai viral vector vaccination in macaques. Microbes Infect 14(13):1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 5th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Leyrer S, Neubert WJ, Sedlmeier R (1998) Rapid and efficient recovery of Sendai virus from cDNA: factors influencing recombinant virus rescue. J Virol Methods 75(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhu Y, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee Y, Fukumura M, Iida A, Kato A, Nagai Y, Hasegawa M (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74:6564–6569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masaki I, Yonemitsu Y, Komori K, Ueno H, Nakashima Y, Nakagawa K, Fukumura M, Kato A, Hasan MK, Nagai Y, Sugimachi K, Hasegawa M, Sueishi K (2001) Recombinant Sendai virus-mediated gene transfer to vasculature: a new class of efficient gene transfer vector to the vascular system. FASEB J 15:1294–1296

    CAS  PubMed  Google Scholar 

  • Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK (1996) Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci USA 93(14):7310–7314

    Article  CAS  PubMed  Google Scholar 

  • Moriya C, Shioda T, Tashiro K, Nagasawa T, Ikegawa M, Ohnishi Y, Kato A, Hu H, Xin X, Hasan MK, Maekawa M, Takebe Y, Sakai Y, Honjo T, Nagai Y (1998) Large quantity production with extreme convenience of human SDF-1α and SDF-1β by a Sendai virus vector. FEBS Lett 425(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Morodomi Y, Yano T, Kinoh H, Harada Y, Saito S, Kyuragi R, Yoshida K, Onimaru M, Shoji F, Yoshida T, Ito K, Shikada Y, Maruyama R, Hasegawa M, Maehara Y, Yonemitsu Y (2012) BioKnife, a uPA activity-dependent oncolytic Sendai virus, eliminates pleural spread of malignant mesothelioma via simultaneous stimulation of uPA expression. Mol Ther 20(4):769–777

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Ikeda Y, Yonemitsu Y, Tanaka S, Kondo H, Okano S, Kohno R, Miyazaki M, Inoue M, Hasegawa M, Ishibashi T, Sueishi K (2008) Newly-developed Sendai virus vector for retinal gene transfer: reduction of innate immune response via deletion of all envelope-related genes. J Gene Med 10(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y (1993) Protease-dependent virus tropism and pathogenicity. Trends Microbiol 1(3): 81–87

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Kato A (1999) Paramyxovirus reverse genetics is coming of age. Microbiol Immunol 43:613–624

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Kato A, Inoue M (2006) Establishment of progress of Sendai virus engineering. Tanpakushitu Kakusan Koso 51(1):27–37 (Review, Japanese)

    Google Scholar 

  • Nagai Y, Inoue M, Iida A, Zhu Y-F, Hasegawa M, Kato A, Matano T (2007) Sendai virus engineering: from reverse genetics to vector development. In: Hefferon KL (ed) Virus expression vectors. Transworld Research Network, Kerala

    Google Scholar 

  • Nagai Y, Takakura A, Irie T, Yonemitsu M, Gotoh B (2011) Evolution from mouse pathogen to a state-of-the-art tool in virus research and biotechnology. In: Samal SK (ed) The paramyxoviruses. Horizon Scientific Press, Norwich

    Google Scholar 

  • Nishimura K, Segawa H, Goto T, Morishita M, Masago A, Takahashi H, Ohmiya Y, Sakaguchi T, Asada M, Imamura T, Shimotono K, Takayama K, Yoshida T, Nakanishi M (2007) Persistent and stable gene expression by a cytoplasmic RNA replicon based on a noncytopathic variant Sendai virus. J Biol Chem 282:27383–27391

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Sano M, Ohtake M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takagasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishi M (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286(6):4760–4771

    Google Scholar 

  • Ogasawara T, Gotoh B, Suzuki H, Asaka J, Shimokata K, Rott R, Nagai Y (1992) Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J 11:467–472

    CAS  PubMed  Google Scholar 

  • Ohnishi Y, Senda T, Nandhagopal N, Sugimoto K, Shioda T, Nagal Y, Mitsui Y (2000) Crystal structure of recombinant native SDF-1α with additional mutagenesis studies: An attempt at a more comprehensive interpretation of accumulated structure-activity relationship data. J Interferon Cytokine Res 20(8):691–700

    Article  CAS  PubMed  Google Scholar 

  • Re GG, Morgan EM, Kingsbury DW (1985) Nucleotide sequences responsible for generation of internally deleted Sendai virus defective interfering genomes. Virology 146(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Kiyotani K, Fukumura M, Asakawa M, Kato A, Shioda T, Yoshida T, Tanaka A, Hasegawa M, Nagai Y (1999) Accommodation of foreign genes into the Sendai virus genome: sizes of inserted genes and viral replication. FEBS Lett 456(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84(19):9733–9748

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki K, Inoue M, Shibata H, Ueda Y, Muramatsu SI, Okada T, Hasegawa M, Ozawa K, Hanazono Y (2005) Efficient and stable Sendai virus-mediated gene transfer into primate embryonic stem cells with pluripotency preserved. Gene Ther 12:203–210

    Article  CAS  PubMed  Google Scholar 

  • Shiotani A, Fukumura M, Maeda M, Hou X, Inoue M, Kanamori T, Komaba S, Washizawa K, Fujikawa S, Yamamoto T, Kadono C, Watabe K, Fukuda H, Saito K, Sakai Y, Nagai Y, Kanzaki J, Hasegawa M (2001) Skeletal muscle regeneration after insulin-like growth factor I gene transfer by recombinant Sendai virus vector. Gene Ther 8(14):1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Shirakura M, Fukumura M, Inoue M, Fujikawa S, Maeda M, Watabe K, Kyuwa S, Yoshikawa Y, Hasegawa M (2003) Sendai virus vector-mediated gene transfer of glial cell line-derived neurotrophic factor prevents delayed neuronal death after transient global ischemia in gerbils. Exp Anim 52(2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Simon-Loriere E, Holmes EC (2011) Why do RNA viruses recombine? Nat Rev Microbiol 9:617–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slobod KS, Shenep JL, Luján-Zilbermann J, Allison K, Brown B, Scroggs RA, Portner A, Coleclough C, Hurwitz JL (2004) Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine 22:3182–3186

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Nagasaki H, Kondo TA, Okajima Y, Suzuki C, Ozaki N, Arima H, Yamamoto T, Ozaki N, Akai M, Sato A, Uozumi N, Inoue M, Hasegawa M, Oiso Y (2008) Novel treatment for lithium-induced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin 2 gene. Endocrinology 149(11):5803–5810

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Harada A, Hayashi Y, Wada K, Asaka J, Gotoh B, Ogasawara T, Nagai Y (1991) Primary structure of the virus activating protease from chick embryo. Its identity with the blood clotting factor Xa. FEBS Lett 283(2):281–285

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Yonemitsu Y, Yoshida K, Okano S, Kondo H, Inoue M, Hasegawa M, Masumoto K, Suita S, Taguchi T, Sueishi K (2007) Impact of deletion of envelope-related genes of recombinant Sendai viruses on immune responses following pulmonary gene transfer of neonatal mice. Gene Ther 14(13):1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Tapparel C, Maurice D, Roux L (1998) The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif, (GNNNNN)3, is essential for replication. J Virol 72:3117–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatsuta K, Tanaka S, Tajiri T, Shibata S, Komaru A, Ueda Y, Inoue M, Hasegawa M, Suita S, Sueishi K, Taguchi T, Yonemitsu Y (2009) Complete elimination of established neuroblastoma by synergistic action of gamma-irradiation and DCs treated with rSeV expressing interferon-beta gene. Gene Ther 16(2):240–251

    Article  CAS  PubMed  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358

    Article  CAS  PubMed  Google Scholar 

  • Tokusumi T, Iida A, Hirata T, Kato A, Nagai Y, Hasegawa M (2002) Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 86:33–38

    Article  CAS  PubMed  Google Scholar 

  • Verma I, Weitzman M (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738

    Article  CAS  PubMed  Google Scholar 

  • Vulliemoz D, Roux L (2001) “Rule of six:” how does the Sendai virus RNA polymerase keep count? J Virol 75:4506–4518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waddington SN, Buckley SM, Bernloehr C, Bossow S, Ungerechts G, Cook T, Gregory L, Rahim A, Themis M, Neubert WJ, Coutelle C, Lauer UM, Bitzer M (2004) Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus. Gene Ther 11(7):599–608

    Article  CAS  PubMed  Google Scholar 

  • Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274(15):10219–10226

    Article  CAS  PubMed  Google Scholar 

  • Wiegand M, Bossow S, Neubert WJ (2005) Sendai virus trailer RNA simultaneously blocks two apoptosis-inducing mechanisms in a cell type-dependent manner. J Gen Virol 86(pt 8): 2305–2314

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Yonemitsu Y, Okano S, Nakagawa K, Nakashima Y, Irisa T, Iwamoto Y, Nagai Y, Hasegawa M, Sueishi K (2002) Fibroblast growth factor-2 determines severity of joint disease in adjuvant-induced arthritis in rats. J Immunol 168(1):450–457

    CAS  PubMed  Google Scholar 

  • Yonemitsu Y, Kitson C, Ferrari S, Farley R, Griesenbach U, Judd DJ, Steel R, Scheid P, Zhu J, Jeffery PK, Kato A, Hasan MK, Masaki I, Nagai Y, Fukumura M, Hasegawa M, Geddes DM, Alton EWFW (2000) Efficient gene transfer to the airway epithelium using recombinant Sendai virus. Nat Biotechnol 18:970–973

    Article  CAS  PubMed  Google Scholar 

  • Yonemitsu Y, Matsumoto T, Itoh H, Okazaki J, Uchiyama M, Yoshida K, Onimaru M, Onohara T, Inoguchi H, Kyuragi R, Guntani A, Shimokawa M, Ban H, Tanaka M, Inoue M, Shu T, Hasegawa M, Nakanishi Y, Maehara Y (2013) DVC1-0101 to treat peripheral arterial disease: phase I/IIa, open-label, dose escalation clinical trial. Mol Ther 21(3):707–714

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki M, Hironaka T, Iwasaki H, Ban H, Tokusumi Y, Iida A, Nagai Y, Hasegawa M, Inoue M (2006) Naked Sendai virus vector lacking all of the envelope-related gene: reduced cytopathogenicity and immunogenicity. J Gene Med 8:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Shioda T, Kato A, Hasan MK, Sakai Y, Nagai Y (1997) Sendai virus-based expression of HIV-1 gp120: reinforcement by the V(−) version. Genes Cells 2:457–466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Hasegawa for critical reading of the manuscript. We thank H. Hara for his careful reading of the manuscript and assistance in English usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Iida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Iida, A., Inoue, M. (2013). Concept and Technology Underlying Sendai Virus (SeV) Vector Development. In: Nagai, Y. (eds) Sendai Virus Vector. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54556-9_3

Download citation

Publish with us

Policies and ethics