Concept and Technology Underlying Sendai Virus (SeV) Vector Development

  • Akihiro Iida
  • Makoto Inoue


Sendai virus (SeV) reverse genetics, hatched out of pure academic need, is developing into the leading-edge biotechnology of a nonintegrating, cytoplasmic RNA vector. Diverse applications of the SeV vector are now in the pipeline and are poised for clinical testing. Here, we describe the conceptual novelty of the SeV vector and the technology used to accommodate a foreign gene of interest into the full-length SeV genome. This technology has advanced further to the generation of non-transmissible safer vector versions. Moreover, the incorporation of predetermined mutations responsible for particular phenotypes into the SeV backbone was actively conducted to produce special versions for its use in respective special settings.


Foreign Gene Foreign Gene Expression Defective Interfere Defective Interfere Particle Secrete Embryonic Alkaline Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to M. Hasegawa for critical reading of the manuscript. We thank H. Hara for his careful reading of the manuscript and assistance in English usage.


  1. Abe T, Masuda S, Ban H, Hayashi S, Ueda Y, Inoue M, Hasegawa M, Nagao Y, Hanazono Y (2011) Ex vivo expansion of human HSCs with Sendai virus vector expressing HoxB4 assessed by sheep in utero transplantation. Exp Hematol 39(1):47–54PubMedCrossRefGoogle Scholar
  2. Adachi A, Kanda T, Shibuta H (1980) Isolation and characterization of temperature-sensitive mutants of Sendai virus. Microbiol Immunol 24(11):1053–1068PubMedCrossRefGoogle Scholar
  3. Arai T, Matsumoto K, Saitoh K, Ui M, Ito T, Murakami M, Kanegae Y, Saito I, Cosset FL, Takeuchi Y, Iba H (1999) A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines. J Virol 72(2):1115–1121Google Scholar
  4. Armeanu S, Ungerechts G, Bernloehr C, Bossow S, Gregor M, Neubert WJ, Lauer UM, Bitzer M (2003) Cell cycle independent infection and gene transfer by recombinant Sendai viruses. J Virol Methods 108:229–233PubMedCrossRefGoogle Scholar
  5. Ban H, Inoue M, Griesenbach U, Munkonge F, Chan M, Iida A, Alton EW, Hasegawa M (2007) Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein. Gene Ther 14(24):1688–1694PubMedCrossRefGoogle Scholar
  6. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA 108(34):14234–14239PubMedCrossRefGoogle Scholar
  7. Bernloehr C, Bossow S, Ungerechts G, Armeanu S, Neubert WJ, Lauer UM, Bitzer M (2004) Efficient propagation of single gene deleted recombinant Sendai virus vectors. Virus Res 99(2):193–197PubMedCrossRefGoogle Scholar
  8. Bitzer M, Armeanu S, Lauer UM, Neubert WJ (2003a) Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 5:543–553PubMedCrossRefGoogle Scholar
  9. Bitzer M, Ungrechts G, Bossow S, Graepler F, Sedlmeier R, Ameanu S, Bernloehr C, Spiegel M (2003b) Negative-strand RNA viral vectors: intravenous application of Sendai virus vectors for the systemic delivery of therapeutic genes. Mol Ther 7:210–217PubMedCrossRefGoogle Scholar
  10. Bossow S, Schlecht S, Schubbert R, Pfeiffer M, Neubert WJ, Wiegand M (2012) Evaluation of nucleocapsid and phosphoprotein P functionality as critical factors during the early phase of paramyxoviral infection. Open Virol J 6:73–81PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bowman MC, Smallwood S, Moyer SA (1999) Dissection of individual functions of the Sendai virus phosphoprotein in transcription. J Virol 73(8):6474–6483PubMedCentralPubMedGoogle Scholar
  12. Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830PubMedCentralPubMedGoogle Scholar
  13. Chare ER, Gould EA, Holmes EC (2003) Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 84(Pt 10):2691–2703PubMedCrossRefGoogle Scholar
  14. Conzelmann K-K (1998) Nonsegmented negative-strand RNA viruses. Annu Rev Genet 32:123–162PubMedCrossRefGoogle Scholar
  15. Feller JA, Smallwood S, Skiadopoulos MH, Murphy BR, Moyer SA (2000) Comparison of identical temperature-sensitive mutations in the L polymerase proteins of Sendai and parainfluenza 3 viruses. Virology 276(1):190–201PubMedCrossRefGoogle Scholar
  16. Ferrari S, Griesenbach U, Shiraki-Iida T, Shu T, Hironaka T, Hou X, Williams J, Zhu J, Jeffery PK, Geddes DM, Hasegawa M, Alton EW (2004) A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Ther 11(22):1659–1664PubMedCrossRefGoogle Scholar
  17. Fuerst TR, Niles FW, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126PubMedCrossRefGoogle Scholar
  18. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y (1990) An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J 9(12):4189–4195PubMedGoogle Scholar
  20. Griesenbach U, Cassady RL, Ferrari S, Fukumura M, Müller C, Schmitt E, Zhu J, Jeffery PK, Nagai Y, Geddes DM, Hasegawa M, Alton EW (2002) The nasal epithelium as a factory for systemic protein delivery. Mol Ther 5(2):98–103PubMedCrossRefGoogle Scholar
  21. Griesenbach U, Inoue M, Hasegawa M, Alton EWFW (2005) Sendai virus for gene therapy and vaccination. Curr Opin Mol Ther 7:346–352PubMedGoogle Scholar
  22. Griesenbach U, Meng C, Farley R, Cheng SH, Scheule RK, Davies MH, Wolstenholme-Hogg PC, ten Hove W, van der Hoeven P, Sinn PL, McCray PB Jr, Inoue M, Geddes DM, Hasegawa M, Frankel G, Wiles S, Alton EW (2008) In vivo imaging of gene transfer to the respiratory tract. Biomaterials 29(10):1533–1540PubMedCrossRefGoogle Scholar
  23. Griesenbach U, McLachlan G, Owaki T, Somerton L, Shu T, Baker A, Tennant P, Gordon C, Vrettou C, Baker E, Collie DD, Hasegawa M, Alton EW (2011) Validation of recombinant Sendai virus in a non-natural host model. Gene Ther 18(2):182–188PubMedCrossRefGoogle Scholar
  24. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint BG, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419PubMedCrossRefGoogle Scholar
  25. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118(9):3132–3142PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hara H, Hara H, Hironaka T, Inoue M, Iida A, Shu T, Hasegawa M, Nagai Y, Falsey AR, Kamali A, Anzala O, Sanders EJ, Karita E, Mwananyanda L, Vasan S, Lombardo A, Parks CL, Sayeed E, Krebs M, Cormier E, Ackland J, Price MA, Excler JL (2011) Prevalence of specific neutralizing antibodies against Sendai virus in populations from different geographic areas: implications for AIDS vaccine development using Sendai virus vectors. Hum Vaccin 7(6):639–645PubMedCrossRefGoogle Scholar
  27. Hasan MK, Kato A, Shioda T, Sakai Y, Yu D, Nagai Y (1997) Creation of an infectious recombinant Sendai virus expressing the firefly luciferase from 3′ proximal first locus. J Gen Virol 78:2813–2820PubMedGoogle Scholar
  28. Hasegawa Y, Konoh H, Iwadate Y, Onimaru M, Ueda Y, Harada Y, Saito S, Furuya A, Saegusa T, Morodomi Y, Hasegawa M, Saito S, Aoki I, Saeki N, Yonemitsu Y (2010) Urokinase-targeted fusion by oncolytic Sendai virus eradicates orthotopic glioblastomas by pronounced synergy with interferon-β gene. Mol Ther 18:1778–1786PubMedCrossRefGoogle Scholar
  29. Hirata T, Iida A, Shiraki-Iida T, Kitazato K, Kato A, Nagai Y, Hasegawa M (2002) The improved method for recovery of F-defective Sendai virus expressing foreign genes from cloned cDNA. J Virol Methods 104(2):125–133PubMedCrossRefGoogle Scholar
  30. Homann HE, Hofschneider PH, Neubert WJ (1990) Sendai virus gene expression in lytically and persistently infected cells. Virology 177:131–140PubMedCrossRefGoogle Scholar
  31. Homma M, Ohuchi M (1973) Trypsin action on the growth of Sendai virus in tissue culture cells III. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol 12(6):1457–1465PubMedCentralPubMedGoogle Scholar
  32. Ikeda Y, Yonemitsu Y, Sakamoto T, Ishibashi T, Ueno H, Kato A, Nagai Y, Fukumura M, Inomata H, Hasegawa M, Sueishi K (2002) Recombinant Sendai virus-mediated gene transfer into adult rat retinal tissue: efficient gene transfer by brief exposure. Exp Eye Res 75(1):39–48PubMedCrossRefGoogle Scholar
  33. Inoue M, Tokusumi Y, Ban H, Kanaya T, Tokusumi T, Nagai Y, Iida A, Hasegawa M (2003a) Non-transmissible virus-like particle formation by F-deficient Sendai virus is temperature-sensitive and reduced by mutations in M and HN proteins. J Virol 77(5):3238–3246PubMedCentralPubMedCrossRefGoogle Scholar
  34. Inoue M, Tokusumi Y, Ban H, Kanaya T, Shirakura M, Tokusumi T, Hirata T, Nagai Y, Iida A, Hasegawa M (2003b) A new type of Sendai virus vector deficient in the matrix gene has lost virus particle formation and gained extensive cell to cell spreading. J Virol 77(11):6419–6429PubMedCentralPubMedCrossRefGoogle Scholar
  35. Inoue M, Tokusumi Y, Ban H, Shirakura M, Kanaya T, Yoshizaki M, Hironaka T, Nagai Y, Iida A, Hasegawa M (2004) Recombinant Sendai virus vectors deleted in both the matrix and the fusion genes: efficient gene transfer with preferable properties. J Gene Med 6(10):1069–1081PubMedCrossRefGoogle Scholar
  36. Inoue H, Iga M, Nabeta H, Yokoo T, Suehiro Y, Okano S, Inoue M, Kinoh H, Katagiri T, Takayama K, Yonemitsu Y, Hasegawa M, Nakamura Y, Nakanishi Y, Tani K (2008) Non-transmissible Sendai virus encoding granulocyte macrophage colony-stimulating factor is a novel and potent vector system for producing autologous tumor vaccines. Cancer Sci 99(11):2315–2326PubMedCrossRefGoogle Scholar
  37. Iseni F, Garcin D, Nishio M, Kedersha N, Anderson P, Kolakofsky D (2002) Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis. EMBO J 21(19):5141–5150PubMedCrossRefGoogle Scholar
  38. Iwadate Y, Inoue M, Saegusa T, Tokusumi Y, Kinoh H, Hasegawa M, Tagawa M, Yamaura A, Shimada H (2005) Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin Cancer Res 11(10):3821–3827PubMedCrossRefGoogle Scholar
  39. Iwasaki Y, Negishi T, Inoue M, Tashiro T, Tabira T, Kimura N (2012) Sendai virus vector-mediated brain-derived neurotrophic factor expression ameliorates memory deficits and synaptic degeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci Res 90(5):981–989PubMedCrossRefGoogle Scholar
  40. Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, Nagai Y (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1:569–579PubMedCrossRefGoogle Scholar
  41. Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, Nagai Y (1999) Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. J Virol 73(11):9237–9246PubMedCentralPubMedGoogle Scholar
  42. Kinoh H, Inoue M, Washizawa K, Yamamoto T, Fujikawa S, Tokusumi Y, Iida A, Nagai Y, Hasegawa M (2004) Generation of a recombinant Sendai virus that selectively activated and lyse human tumor cells expressing matrix metalloproteinases. Gene Ther 11:1137–1145PubMedCrossRefGoogle Scholar
  43. Kinoh H, Inoue M, Komaru A, Ueda Y, Hasegawa M, Yonemitsu Y (2009) Generation of optimized and urokinase-targeted oncolytic Sendai virus vectors applicable for various human malignancies. Gene Ther 16:392–403PubMedCrossRefGoogle Scholar
  44. Kitamura A, Matsushita K, Takiguchi Y, Shimada H, Tada Y, Yamanaka M, Hiroshima K, Tagawa M, Tomonaga T, Matsubara H, Inoue M, Hasegawa M, Sato Y, Levens D, Tatsumi K, Nomura F (2011) Synergistic effect of non-transmissible Sendai virus vector encoding the c-myc suppressor FUSE-binding protein-interacting repressor plus cisplatin in the treatment of malignant pleural mesothelioma. Cancer Sci 102(7):1366–1373PubMedCrossRefGoogle Scholar
  45. Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899PubMedCentralPubMedGoogle Scholar
  46. Komada H, Kusagawa S, Orvell C, Tsurudome M, Nishio M, Bando H, Kawano M, Matsumura H, Norrby E, Ito Y (1992) Antigenic diversity of human parainfluenza virus type 1 isolates and their immunological relationship with Sendai virus revealed by using monoclonal antibodies. J Gen Virol 73(Pt 4):875–884PubMedCrossRefGoogle Scholar
  47. Kurihara K, Takahara Y, Nomura T, Ishii H, Iwamoto N, Takahashi N, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Moriya C, Matano T (2012) Immunogenicity of repeated Sendai viral vector vaccination in macaques. Microbes Infect 14(13):1169–1176PubMedCrossRefGoogle Scholar
  48. Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 5th edn. Lippincott-Raven, PhiladelphiaGoogle Scholar
  49. Leyrer S, Neubert WJ, Sedlmeier R (1998) Rapid and efficient recovery of Sendai virus from cDNA: factors influencing recombinant virus rescue. J Virol Methods 75(1):47–58PubMedCrossRefGoogle Scholar
  50. Li H, Zhu Y, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee Y, Fukumura M, Iida A, Kato A, Nagai Y, Hasegawa M (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74:6564–6569PubMedCentralPubMedCrossRefGoogle Scholar
  51. Masaki I, Yonemitsu Y, Komori K, Ueno H, Nakashima Y, Nakagawa K, Fukumura M, Kato A, Hasan MK, Nagai Y, Sugimachi K, Hasegawa M, Sueishi K (2001) Recombinant Sendai virus-mediated gene transfer to vasculature: a new class of efficient gene transfer vector to the vascular system. FASEB J 15:1294–1296PubMedGoogle Scholar
  52. Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK (1996) Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci USA 93(14):7310–7314PubMedCrossRefGoogle Scholar
  53. Moriya C, Shioda T, Tashiro K, Nagasawa T, Ikegawa M, Ohnishi Y, Kato A, Hu H, Xin X, Hasan MK, Maekawa M, Takebe Y, Sakai Y, Honjo T, Nagai Y (1998) Large quantity production with extreme convenience of human SDF-1α and SDF-1β by a Sendai virus vector. FEBS Lett 425(1):105–111PubMedCrossRefGoogle Scholar
  54. Morodomi Y, Yano T, Kinoh H, Harada Y, Saito S, Kyuragi R, Yoshida K, Onimaru M, Shoji F, Yoshida T, Ito K, Shikada Y, Maruyama R, Hasegawa M, Maehara Y, Yonemitsu Y (2012) BioKnife, a uPA activity-dependent oncolytic Sendai virus, eliminates pleural spread of malignant mesothelioma via simultaneous stimulation of uPA expression. Mol Ther 20(4):769–777PubMedCrossRefGoogle Scholar
  55. Murakami Y, Ikeda Y, Yonemitsu Y, Tanaka S, Kondo H, Okano S, Kohno R, Miyazaki M, Inoue M, Hasegawa M, Ishibashi T, Sueishi K (2008) Newly-developed Sendai virus vector for retinal gene transfer: reduction of innate immune response via deletion of all envelope-related genes. J Gene Med 10(2):165–176PubMedCrossRefGoogle Scholar
  56. Nagai Y (1993) Protease-dependent virus tropism and pathogenicity. Trends Microbiol 1(3): 81–87PubMedCrossRefGoogle Scholar
  57. Nagai Y, Kato A (1999) Paramyxovirus reverse genetics is coming of age. Microbiol Immunol 43:613–624PubMedCrossRefGoogle Scholar
  58. Nagai Y, Kato A, Inoue M (2006) Establishment of progress of Sendai virus engineering. Tanpakushitu Kakusan Koso 51(1):27–37 (Review, Japanese)Google Scholar
  59. Nagai Y, Inoue M, Iida A, Zhu Y-F, Hasegawa M, Kato A, Matano T (2007) Sendai virus engineering: from reverse genetics to vector development. In: Hefferon KL (ed) Virus expression vectors. Transworld Research Network, KeralaGoogle Scholar
  60. Nagai Y, Takakura A, Irie T, Yonemitsu M, Gotoh B (2011) Evolution from mouse pathogen to a state-of-the-art tool in virus research and biotechnology. In: Samal SK (ed) The paramyxoviruses. Horizon Scientific Press, NorwichGoogle Scholar
  61. Nishimura K, Segawa H, Goto T, Morishita M, Masago A, Takahashi H, Ohmiya Y, Sakaguchi T, Asada M, Imamura T, Shimotono K, Takayama K, Yoshida T, Nakanishi M (2007) Persistent and stable gene expression by a cytoplasmic RNA replicon based on a noncytopathic variant Sendai virus. J Biol Chem 282:27383–27391PubMedCrossRefGoogle Scholar
  62. Nishimura K, Sano M, Ohtake M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takagasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishi M (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286(6):4760–4771Google Scholar
  63. Ogasawara T, Gotoh B, Suzuki H, Asaka J, Shimokata K, Rott R, Nagai Y (1992) Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J 11:467–472PubMedGoogle Scholar
  64. Ohnishi Y, Senda T, Nandhagopal N, Sugimoto K, Shioda T, Nagal Y, Mitsui Y (2000) Crystal structure of recombinant native SDF-1α with additional mutagenesis studies: An attempt at a more comprehensive interpretation of accumulated structure-activity relationship data. J Interferon Cytokine Res 20(8):691–700PubMedCrossRefGoogle Scholar
  65. Re GG, Morgan EM, Kingsbury DW (1985) Nucleotide sequences responsible for generation of internally deleted Sendai virus defective interfering genomes. Virology 146(1):27–37PubMedCrossRefGoogle Scholar
  66. Sakai Y, Kiyotani K, Fukumura M, Asakawa M, Kato A, Shioda T, Yoshida T, Tanaka A, Hasegawa M, Nagai Y (1999) Accommodation of foreign genes into the Sendai virus genome: sizes of inserted genes and viral replication. FEBS Lett 456(2):221–226PubMedCrossRefGoogle Scholar
  67. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84(19):9733–9748PubMedCentralPubMedCrossRefGoogle Scholar
  68. Sasaki K, Inoue M, Shibata H, Ueda Y, Muramatsu SI, Okada T, Hasegawa M, Ozawa K, Hanazono Y (2005) Efficient and stable Sendai virus-mediated gene transfer into primate embryonic stem cells with pluripotency preserved. Gene Ther 12:203–210PubMedCrossRefGoogle Scholar
  69. Shiotani A, Fukumura M, Maeda M, Hou X, Inoue M, Kanamori T, Komaba S, Washizawa K, Fujikawa S, Yamamoto T, Kadono C, Watabe K, Fukuda H, Saito K, Sakai Y, Nagai Y, Kanzaki J, Hasegawa M (2001) Skeletal muscle regeneration after insulin-like growth factor I gene transfer by recombinant Sendai virus vector. Gene Ther 8(14):1043–1050PubMedCrossRefGoogle Scholar
  70. Shirakura M, Fukumura M, Inoue M, Fujikawa S, Maeda M, Watabe K, Kyuwa S, Yoshikawa Y, Hasegawa M (2003) Sendai virus vector-mediated gene transfer of glial cell line-derived neurotrophic factor prevents delayed neuronal death after transient global ischemia in gerbils. Exp Anim 52(2):119–127PubMedCrossRefGoogle Scholar
  71. Simon-Loriere E, Holmes EC (2011) Why do RNA viruses recombine? Nat Rev Microbiol 9:617–626PubMedCentralPubMedCrossRefGoogle Scholar
  72. Slobod KS, Shenep JL, Luján-Zilbermann J, Allison K, Brown B, Scroggs RA, Portner A, Coleclough C, Hurwitz JL (2004) Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine 22:3182–3186PubMedCrossRefGoogle Scholar
  73. Suga H, Nagasaki H, Kondo TA, Okajima Y, Suzuki C, Ozaki N, Arima H, Yamamoto T, Ozaki N, Akai M, Sato A, Uozumi N, Inoue M, Hasegawa M, Oiso Y (2008) Novel treatment for lithium-induced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin 2 gene. Endocrinology 149(11):5803–5810PubMedCrossRefGoogle Scholar
  74. Suzuki H, Harada A, Hayashi Y, Wada K, Asaka J, Gotoh B, Ogasawara T, Nagai Y (1991) Primary structure of the virus activating protease from chick embryo. Its identity with the blood clotting factor Xa. FEBS Lett 283(2):281–285PubMedCrossRefGoogle Scholar
  75. Tanaka S, Yonemitsu Y, Yoshida K, Okano S, Kondo H, Inoue M, Hasegawa M, Masumoto K, Suita S, Taguchi T, Sueishi K (2007) Impact of deletion of envelope-related genes of recombinant Sendai viruses on immune responses following pulmonary gene transfer of neonatal mice. Gene Ther 14(13):1017–1028PubMedCrossRefGoogle Scholar
  76. Tapparel C, Maurice D, Roux L (1998) The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif, (GNNNNN)3, is essential for replication. J Virol 72:3117–3128PubMedCentralPubMedGoogle Scholar
  77. Tatsuta K, Tanaka S, Tajiri T, Shibata S, Komaru A, Ueda Y, Inoue M, Hasegawa M, Suita S, Sueishi K, Taguchi T, Yonemitsu Y (2009) Complete elimination of established neuroblastoma by synergistic action of gamma-irradiation and DCs treated with rSeV expressing interferon-beta gene. Gene Ther 16(2):240–251PubMedCrossRefGoogle Scholar
  78. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358PubMedCrossRefGoogle Scholar
  79. Tokusumi T, Iida A, Hirata T, Kato A, Nagai Y, Hasegawa M (2002) Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 86:33–38PubMedCrossRefGoogle Scholar
  80. Verma I, Weitzman M (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738PubMedCrossRefGoogle Scholar
  81. Vulliemoz D, Roux L (2001) “Rule of six:” how does the Sendai virus RNA polymerase keep count? J Virol 75:4506–4518PubMedCentralPubMedCrossRefGoogle Scholar
  82. Waddington SN, Buckley SM, Bernloehr C, Bossow S, Ungerechts G, Cook T, Gregory L, Rahim A, Themis M, Neubert WJ, Coutelle C, Lauer UM, Bitzer M (2004) Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus. Gene Ther 11(7):599–608PubMedCrossRefGoogle Scholar
  83. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274(15):10219–10226PubMedCrossRefGoogle Scholar
  84. Wiegand M, Bossow S, Neubert WJ (2005) Sendai virus trailer RNA simultaneously blocks two apoptosis-inducing mechanisms in a cell type-dependent manner. J Gen Virol 86(pt 8): 2305–2314PubMedCrossRefGoogle Scholar
  85. Yamashita A, Yonemitsu Y, Okano S, Nakagawa K, Nakashima Y, Irisa T, Iwamoto Y, Nagai Y, Hasegawa M, Sueishi K (2002) Fibroblast growth factor-2 determines severity of joint disease in adjuvant-induced arthritis in rats. J Immunol 168(1):450–457PubMedGoogle Scholar
  86. Yonemitsu Y, Kitson C, Ferrari S, Farley R, Griesenbach U, Judd DJ, Steel R, Scheid P, Zhu J, Jeffery PK, Kato A, Hasan MK, Masaki I, Nagai Y, Fukumura M, Hasegawa M, Geddes DM, Alton EWFW (2000) Efficient gene transfer to the airway epithelium using recombinant Sendai virus. Nat Biotechnol 18:970–973PubMedCrossRefGoogle Scholar
  87. Yonemitsu Y, Matsumoto T, Itoh H, Okazaki J, Uchiyama M, Yoshida K, Onimaru M, Onohara T, Inoguchi H, Kyuragi R, Guntani A, Shimokawa M, Ban H, Tanaka M, Inoue M, Shu T, Hasegawa M, Nakanishi Y, Maehara Y (2013) DVC1-0101 to treat peripheral arterial disease: phase I/IIa, open-label, dose escalation clinical trial. Mol Ther 21(3):707–714PubMedCrossRefGoogle Scholar
  88. Yoshizaki M, Hironaka T, Iwasaki H, Ban H, Tokusumi Y, Iida A, Nagai Y, Hasegawa M, Inoue M (2006) Naked Sendai virus vector lacking all of the envelope-related gene: reduced cytopathogenicity and immunogenicity. J Gene Med 8:1151–1159PubMedCrossRefGoogle Scholar
  89. Yu D, Shioda T, Kato A, Hasan MK, Sakai Y, Nagai Y (1997) Sendai virus-based expression of HIV-1 gp120: reinforcement by the V(−) version. Genes Cells 2:457–466PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.DNAVEC CorporationIbarakiJapan

Personalised recommendations