Skip to main content

Sendai Virus Biology and Engineering Leading up to the Development of a Novel Class of Expression Vector

  • Chapter
  • First Online:
Sendai Virus Vector
  • 878 Accesses

Abstract

Sendai virus (SeV), a prototypic member of the family Paramyxoviridae, was discovered in 1953, six decades ago. It is not just an old mouse pathogen but has been an irreplaceable model in in basic research to understand paramyxovirus replication and pathogenesis. The SeV reverse genetics established in 1996 has played a particularly prominent role in this context by settling outstanding issues and resolving enigmas. At the same time, the technology is evolving into a multipurpose cytoplasmic (nonintegrating) RNA vector. Its diverse medical applications are now in the pipeline and being tested in clinical settings as illustrated in the subsequent chapters. The production of diverse target-oriented devices has been possible by making full use of a variety of SeV theories and traits discovered during the six decades. Here, we summarize the long journey of SeV research leading up to the invention of this novel class of expression vector, SeV vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali A, Nayak DP (2000) Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein. Virology 276:289–303

    CAS  PubMed  Google Scholar 

  • Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993

    CAS  PubMed  Google Scholar 

  • Bächi T (1980) Intramembrane structural differentiation in Sendai virus maturation. Virology 106:41–49

    PubMed  Google Scholar 

  • Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344:55–63

    CAS  PubMed  Google Scholar 

  • Billeter MA, Cattaneo R (1991) Molecular biology of defective measles viruses persisting in the human central nervous system. In: Kingsbury DW (ed) The paramyxoviruses. Plenum Press, New York

    Google Scholar 

  • Bitzer M, Lauer U, Baumann C, Spiegel M, Gregor M, Neubert WJ (1997) Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry. J Virol 71:5481–5486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blanchard L, Tarbouriech N, Blackledge M, Timmins P, Burmeister WP, Ruigrok RWH, Marion D (2004) Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phosphoprotein in solution. Virology 319:201–211

    CAS  PubMed  Google Scholar 

  • Bossow S, Schiecht S, Schubbert R, Pfeiffer M, Neubert WJ, Wiegand M (2012) Evaluation of nucleocapsid and phosphoprotein P functionality as critical factors during the early phase of paramyxoviral infection. Open Virol J 6:73–81. doi:10.2174/1874357901206010073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Böttcher E, Freuer C, Steinmetzer T, Klenk HD, Garten W (2006) MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. Vaccine 27:6324–6329

    Google Scholar 

  • Bousse T, Takimoto T (2006) Mutation at residue 523 creates a second receptor binding site on human parainfluenza virus type 1 hemagglutinin-neuraminidase protein. J Virol 80:9009–9016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchholz CJ, Spehner D, Drillien R, Neubert WJ, Homann HE (1993) The conserved N-terminal region of Sendai virus nucleocapsid protein NP is required for nucleocapsid assembly. J Virol 67:5803–5812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cadd T, Garcin D, Tapparel C, Itoh M, Homma M, Roux L, Curran J, Kolakofsky D (1996) The Sendai paramyxovirus accessory C proteins inhibit viral genome amplification in a promoter-specific fashion. J Virol 70:5067–5074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calistri A, Salata C, Parolin C, Palù G (2009) Role of multivesicular bodies and their components in the egress of enveloped RNA viruses. Rev Med Virol 19:21–45

    Google Scholar 

  • Çevik B, Kaesberg J, Smallwood S, Feller JA, Moyer SA (2004) Mapping the phosphoprotein binding site on Sendai virus NP protein assembled into nucleocapsids. Virology 325:216–224

    PubMed  Google Scholar 

  • Çevik B, Smallwood S, Moyer SA (2007) Two N-terminal regions of the Sendai virus L RNA polymerase protein participate in oligomerization. Virology 363:189–197

    PubMed  Google Scholar 

  • Chaipan C, Kabasa D, Bertram S, Glowacka I, Steffen I, Tsegaye TS, Takeda M, Bugge TH, Kim S, Park Y, Marzi A, Pöhlmann S (2009) Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol 83:3200–3211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers R, Takimoto T (2010) Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles. PLoS One 5:e10994. doi:10.137/journal.pone.0010994

    PubMed Central  PubMed  Google Scholar 

  • Chandrika R, Horikami SM, Smallwood S, Moyer SA (1995) Mutations in conserved domain I of the Sendai virus L polymerase protein uncouple transcription and replication. Virology 213:352–363

    CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, Desai A, Williams BR, Sen GC (2010) Viral apoptosis is induced by IRF-3-mediated activation of bax. EMBO J 29:1762–1773

    CAS  PubMed  Google Scholar 

  • Choppin PW, Compans RW (1975) Reproduction of paramyxoviruses. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology, vol 4. Plenum Press, New York

    Google Scholar 

  • Cortese CK, Feller JA, Moyer SA (2000) Mutations in domain V and the Sendai virus L polymerase protein uncouple transcription and replication and differentially affect replication in vitro and in vivo. Virology 277:387–396

    CAS  PubMed  Google Scholar 

  • Curran J (1996) Reexamination of the Sendai virus P protein domains required for RNA synthesis: a possible supplemental role for the P protein. Virology 221:130–140

    CAS  PubMed  Google Scholar 

  • Curran J (1998) A role for the Sendai virus P protein trimer in RNA synthesis. J Virol 72:4274–4280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curran J, Kolakofsky D (1987) Identification of an additional Sendai virus non-structural protein encoded by the P/C mRNA. J Gen Virol 68:2515–2519

    CAS  PubMed  Google Scholar 

  • Curran J, Kolakofsky D (1988a) Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA. EMBO J 7:245–251

    CAS  PubMed  Google Scholar 

  • Curran J, Kolakofsky D (1988b) Scanning independent ribosomal initiation of the Sendai virus X protein. EMBO J 7:2869–2874

    CAS  PubMed  Google Scholar 

  • Curran J, Kolakofsky D (1989) Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. EMBO J 8:521–526

    CAS  PubMed  Google Scholar 

  • Curran J, Kolakofsky D (2008) Nonsegmented negative-strand RNA virus RNA synthesis in vivo. Virology 371:227–230

    CAS  PubMed  Google Scholar 

  • Curran J, Boeck R, Kolakofsky D (1991) The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis by shuffling modules via mRNA editing. EMBO J 10:3079–3085

    CAS  PubMed  Google Scholar 

  • Curran J, Marq J-B, Kolakofsky D (1992) The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 189:647–656

    CAS  PubMed  Google Scholar 

  • Curran J, Homann H, Buchholz C, Rochat S, Neubert W, Kolakofsky D (1993) The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsid protein in required for template function but not for RNA encapsidation. J Virol 67:4358–4364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curran J, Pelet T, Kolakofsky D (1994) An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation. Virology 202:875–884

    CAS  PubMed  Google Scholar 

  • Curran J, Marq J-B, Kolakofsky D (1995) An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J Virol 69:849–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Breyne S, Monney RS, Curran J (2004) Proteolytic processing and translation initiation: two independent mechanisms for the expression of the Sendai virus Y proteins. J Biol Chem 279:16571–16580

    PubMed  Google Scholar 

  • Delenda C, Hausmann S, Garcin D, Kolakofsky D (1997) Normal cellular replication of Sendai virus without the trans-frame, nonstructural V protein. Virology 228:55–62

    CAS  PubMed  Google Scholar 

  • Demirov DG, Freed EO (2004) Retrovirus budding. Virus Res 106:87–102

    CAS  PubMed  Google Scholar 

  • Didcock L, Young DF, Goodbourn S, Randall RE (1999a) Sendai virus and simian virus 5 block activation of interferon-responsive genes: importance for virus pathogenesis. J Virol 73:3125–3133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Didcock L, Young DF, Goodbourn S, Randall RE (1999b) The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73:9928–9933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drexler JF, Corman VM, Müller MA, Maganda GD, Vallo P, Binger T, Gloza-Rausch F, Rasche A, Yordanov S, Seebens A, Oppong S, Sarkodie Y, Pngombo C, Lukashev AN, Schmidt-Chanasit J, Stöcker A, Carneiro AJ, Erbar S, Maisner A, Fronhoffs F, Buettner R, Kalko EK, Kruppa T, Franke CR, Kallies R, Yandoko ER, Herrler G, Reusken C, Hassanin A, Krüger DH, Matthee S, Ulrich RF, Leroy EM, Drosten C (2012) Bats host major mammalian paramyxoviruses. Nat Commun 3:796. doi:10.1038/ncomms1796

    Google Scholar 

  • Easterbrook JD, Kaplan JB, Glass GE, Watson J, Klein SL (2008) A survey of rodent-borne pathogens carried by wild-caught Norway rats: a potential threat to laboratory rodent colonies. Lab Anim 42:92–98

    CAS  PubMed  Google Scholar 

  • Egelman EH, Wu S-S, Amrein M, Portner A, Murti G (1989) The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63:2233–2243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Einberger H, Mertz R, Hofschneider PH, Neubert WJ (1990) Purification, renaturation, and reconstituted protein kinase activity of the Sendai virus large (L) protein: L protein phosphorylates the NP and P proteins in vitro. J Virol 64:4274–4280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feller JA, Smallwood S, Horikami SM, Moyer SA (2000) Mutations in conserved domains IV and VI of the large (L) subunit of the Sendai virus RNA polymerase give an spectrum of defective RNA synthesis phenotypes. Virology 269:426–439

    CAS  PubMed  Google Scholar 

  • Finch JT, Gibbs AJ (1970) Observations on the suructure of the nucleocapsids of some paramyxoviruses. J Gen Virol 6:141–150

    CAS  PubMed  Google Scholar 

  • Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126

    CAS  PubMed  Google Scholar 

  • Fujii Y, Kiyotani K, Yashida T, Sakaguchi T (2001) Conserved and non-conserved regions in the Sendai virus genome: evolution of a gene possessing overlapping reading frames. Virus Genes 22:47–52

    CAS  PubMed  Google Scholar 

  • Fukuhara N, Huang C, Kiyotani K, Yoshida T, Sakaguchi T (2002) Mutational analysis of the Sendai virus V protein: importance of the conserved residues for Zn binding, virus pathogenesis and efficient RNA editing. Virology 299:172–178

    CAS  PubMed  Google Scholar 

  • Fukumi H, Nishikawa F, Kitayama T (1954) A pneumotropic virus from mice causing hemagglutination. Jpn J Med Sci Biol 7:345–363

    CAS  PubMed  Google Scholar 

  • Galinski MS, Troy RM, Banerjee AK (1992) RNA editing in the phosphoprotein gene of the human parainfluenza virus type 3. Virology 186:543–550

    CAS  PubMed  Google Scholar 

  • Garcin D, Pelet T, Calain P, Roux L, Curran J, Kolakofsky D (1995) A highly recombinogenic system for the recovery of infections Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 14:6087–6094

    CAS  PubMed  Google Scholar 

  • Garcin D, Latorre P, Kolakofsky D (1999) Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state. J Virol 73:6559–6565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gething MJ, White JM, Waterfield MD (1978) Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation. Proc Natl Acad Sci USA 75:2737–2740

    CAS  PubMed  Google Scholar 

  • Goff PH, Gao Q, Palese P (2012) A majority of infectious Newcastle disease virus particles packages a single genome while a minority is multiploid. J Virol 86:10852–10856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gosselin-Grenet AS, Mottet-Osman G, Roux L (2006) From assembly to virus particle budding: pertinence of the detergent resistant membranes. Virology 344:296–303

    CAS  PubMed  Google Scholar 

  • Gosselin-Grenet AS, Marq JB, Abrami L, Garcin D, Roux L (2007) Sendai virus budding in the course of an infection does not require Alix and VPS4A host factors. Virology 365:101–112

    CAS  PubMed  Google Scholar 

  • Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y (1990) An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J 9:4189–4195

    CAS  PubMed  Google Scholar 

  • Gotoh B, Takeuchi K, Komatsu T, Yokoo J, Kimura Y, Kato A, Kurotani A, Nagai Y (1999) Knockout of the Sendai virus C genes eliminates the viral ability to prevent the interferon-α/β mediated responses. FEBS Lett 459:205–210

    CAS  PubMed  Google Scholar 

  • Gotoh B, Komatsu T, Takeuchi K, Yokoo J (2001) Paramyxovirus accessory proteins as interferon antagonists. Microbiol Immunol 45:787–800

    CAS  PubMed  Google Scholar 

  • Gotoh B, Komatsu T, Takeuchi K, Yokoo J (2002) Paramyxovirus strategies for evading the interferon response. Rev Med Virol 12:337–357

    CAS  PubMed  Google Scholar 

  • Gotoh B, Komatsu T, Takeuchi K, Yokoo J (2003a) The C-terminal half-fragment of the Sendai virus C protein prevents the gamma-activated factor from binding to a gamma-activated sequence site. Virology 316:29–40

    CAS  PubMed  Google Scholar 

  • Gotoh B, Takeuchi K, Komatsu T, Yokoo J (2003b) The STAT2 activation process is a crucial target of Sendai virus C protein for the blockade of alpha interferon signaling. J Virol 77:3360–3370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grogan CC, Moyer SA (2001) Sendai virus wild-type and mutant C proteins show a direct correlation between L polymerase binding and inhibition of viral RNA synthesis. Virology 288:96–108

    CAS  PubMed  Google Scholar 

  • Gubbay O, Curran J, Kolakofsky D (2001) Sendai virus genome synthesis and assembly are coupled: a possible mechanism to promote viral RNA polymerase processivity. J Gen Virol 82:2895–2903

    CAS  PubMed  Google Scholar 

  • Gupta KC, Patwardhan S (1988) ACG, the initiator codon for Sendai virus C protein. J Biol Chem 263:8553–8556

    CAS  PubMed  Google Scholar 

  • Hamaguchi M, Yoshida T, Nishikawa K, Naruse H, Nagai Y (1983) Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex. Virology 128:105–117

    CAS  PubMed  Google Scholar 

  • Harrison MS, Sakaguchi T, Schmitt AP (2010) Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol 42:1416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasan MK, Kato A, Shioda T, Sakai Y, Yu D, Nagai Y (1997) Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3′ proximal first locus. J Gen Virol 78:2813–2820

    CAS  PubMed  Google Scholar 

  • Hasan MK, Kato A, Muranaka M, Yamaguchi R, Sakai Y, Hatano I, Tashiro M, Nagai Y (2000) Versatility of the accessory C proteins of Sendai virus. Contribution to virus assembly as an additional role. J Virol 74:5619–5628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heggeness MH, Scheid A, Choppin PW (1981) The relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage of the NP polypeptide. Virology 114:555–562

    CAS  PubMed  Google Scholar 

  • Heggeness MH, Smith PR, Choppin PW (1982) In vitro assembly of the nonglycosylated membrane protein (M) of Sendai virus. Proc Natl Acad Sci U S A 79:6232–6236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hendricks DD, Ono E, Seyer JM, Gupta KC (1993) Phosphorylation of the Sendai virus C proteins. Virology 197:471–474

    CAS  PubMed  Google Scholar 

  • Hewitt JA, Nermut MV (1977) A morphological study of the M-protein of Sendai virus. J Gen Virol 34:127–136

    CAS  PubMed  Google Scholar 

  • Heylbroeck C, Balachandran S, Servant MJ, DeLuca C, Barber GN, Lin R, Hiscott J (2000) The IRF-3 transcription factor mediates Sendai virus-induced apoptosis. J Virol 74:3781–3792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hidaka Y, Kanda T, Iwasaki K, Nomoto A, Shioda T, Shibuta H (1984) Nucleotide sequence of Sendai virus genome region covering the entire M gene and the 3′ proximal 1013 nucleotides of the F gene. Nucleic Acids Res 12:7965–7973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmes DE, Moyer SA (2002) The phosphoprotein (P) binding site resides in the N terminus of the L polymerase subunit of Sendai virus. J Virol 76:3078–3083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Homma M, Ouchi M (1973) Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol 12:1457–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horikami SM, Curran J, Kolakofsky D, Moyer SA (1992) Comlpexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol 66:4901–4908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horikami SM, Hector RE, Smallwood S, Moyer SA (1997) The Sendai virus C protein binds the L polymerase protein to inhibit viral RNA synthesis. Virology 235:261–270

    CAS  PubMed  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    PubMed  Google Scholar 

  • Hosaka Y (1968) Isolation and structure of the nucleocapsid of HVJ. Virology 35:445–457

    CAS  PubMed  Google Scholar 

  • Hosaka Y, Kitano H, Ikeguchi S (1966) Studies on the pleomorphism of HVJ virions. Virology 29:205–221

    CAS  PubMed  Google Scholar 

  • Houben K, Marion D, Tarbouriech N, Ruigrok RWH, Blanchard L (2007) Interaction of the C-terminal domains of Sendai virus N and P proteins: comparison of polymerase-nucleocapsid interactions within the paramyxovirus family. J Virol 81:6807–6816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howe C, Morgan C (1969) Interactions between Sendai virus and human erythrocytes. J Virol 3:70–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu C-J, Gupta KC (2000) Functional significance of alternate phosphorylation in Sendai virus P protein. Virology 268:517–532

    CAS  PubMed  Google Scholar 

  • Hu C, Kato A, Bowman MC, Kiyotani K, Yoshida T, Moyer SA, Nagai Y, Gupta KC (1999) Role of primary constitutive phosphorylation of Sendai virus P and V proteins in viral replication and pathogenesis. Virology 263:195–208

    CAS  PubMed  Google Scholar 

  • Huang C, Kiyotani K, Fujii Y, Fukuhara N, Kato A, Nagai Y, Yoshida T, Sakaguchi T (2000) Involvement of the zinc-binding capacity of Sendai virus V protein in viral pathogenesis. J Virol 74:7834–7841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes S, Mellstrom K, Kosik E, Tamanoi F, Brugge J (1984) Mutation of a termination codon affects src initiation. Mol Cell Biol 4:1738–1746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huntley CC, De BP, Banerjee AK (1997) Phosphorylation of Sendai virus phosphoprotein by cellular protein kinase C ζ. J Biol Chem 272:16578–16584

    CAS  PubMed  Google Scholar 

  • Inoue M, Tokusumi Y, Ban H, Kanaya T, Tokusumi T, Nagai Y, Iida A, Hasegawa M (2003a) Nontransmissible virus-like particle formation by F-deficient Sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J Virol 77:3238–3246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue M, Tokusumi Y, Ban H, Kanaya T, Shirakura M, Tokusumi T, Hirata T, Nagai Y, Iida A, Hasegawa M (2003b) A new type of Sendai virus vector deficient in the matrix gene has lost virus particle formation and gained extensive cell-to-cell spreading. J Virol 77:6419–6429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irie T, Shimazu Y, Yoshida T, Sakaguchi T (2007) The YLDL sequence within Sendai virus M protein is critical for budding of virus-like particles and interacts with Alix/AIP1 independently of C protein. J Virol 81:2263–2273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irie T, Nagata N, Yoshida T, Sakaguchi T (2008a) Paramyxovirus Sendai virus C proteins are essential for maintenance of negative-sense RNA genome in virus particles. Virology 374:495–505

    CAS  PubMed  Google Scholar 

  • Irie T, Nagata N, Yoshida T, Sakaguchi T (2008b) Recruitment of Alix/AIP1 to the plasma membrane by Sendai virus C protein facilitates budding of virus-like particles. Virology 371:108–120

    CAS  PubMed  Google Scholar 

  • Irie T, Inoue M, Sakaguchi T (2010) Significance of the YLDL motif in the M protein and Alix/AIP1 for Sendai virus budding in the context of virus infection. Virology 405:334–341

    CAS  PubMed  Google Scholar 

  • Irie T, Kiyotani K, Igarashi T, Yoshida A, Sakaguchi T (2012) Inhibition of interferon regulatory factor 3 activation by paramyxovirus V protein. J Virol 86:7136–7145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irie T, Okamoto I, Yoshida A, Nagai Y, Sakaguchi T (2014) Sendai virus C proteins regulate viral genome and antigenome synthesis to dictate the negative genome polarity. J Virol 88:690–698

    Google Scholar 

  • Ishida N, Homma M (1978) Sendai virus. Adv Virus Res 23:349–383

    CAS  PubMed  Google Scholar 

  • Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, Kawaoka Y (1997) Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71:3357–3362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwata S, Schmidt AC, Titani K, Suzuki M, Kido H, Gotoh B, Hamaguchi M, Nagai Y (1994) Assignment of disulfide bridges in the fusion glycoprotein of Sendai virus. J Virol 68:3200–3206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, Nagai Y (1996) Initiation of Sendai virus multiplication from transfected viral cDNA or RNA with negative or positive sense. Genes Cells 1:569–579

    CAS  PubMed  Google Scholar 

  • Kato A, Kiyotani K, Sakai Y, Yoshida T, Nagai Y (1997a) The paramyxovirus, Sendai virus, V protein encodes a luxury function required for viral pathogenesis. EMBO J 16:578–587

    CAS  PubMed  Google Scholar 

  • Kato A, Kiyotani K, Sakai Y, Yoshida T, Shioda T, Nagai Y (1997b) Importance of the cysteine-rich carboxyl-terminal half of V protein for Sendai virus pathogenesis. J Virol 71:7266–7272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, Nagai Y (1999) Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the F gene. J Virol 73:9237–9246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato A, Ohnishi Y, Kohase M, Saito S, Tashiro M, Nagai Y (2001) Y2, the smallest of the Sendai virus C proteins, is fully capable of both counteracting the antiviral action of interferons and inhibiting viral RNA synthesis. J Virol 75:3802–3810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato A, Ohnishi Y, Hishiyama M, Kohase M, Saito S, Tashiro M, Nagai Y (2002) The amino-terminal half of Sendai virus C protein is not responsible for either counteracting the antiviral action of interferons or down- regulating viral RNA synthesis. J Virol 76:7114–7124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato A, Cortese-Grogan C, Moyer SA, Sugahara F, Sakaguchi T, Kubota T, Otsuki N, Kohase M, Tashiro M, Nagai Y (2004) Characterization of the amino acid residues of sendai virus C protein that are critically involved in its interferon antagonism and RNA synthesis down-regulation. J Virol 78:7443–7454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato A, Kiyotani K, Kubota T, Yoshida T, Tashiro M, Nagai Y (2007) Importance of the anti-interferon capacity of Sendai virus C protein for pathogenicity in mice. J Virol 81:3264–3271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kido H, Yokogoshi Y, Sakai K, Tashiro M, Kishino Y, Fukutomi A, Katunuma N (1992) Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells: a possible activator of the viral fusion glycoprotein. J Biol Chem 267:13573–13579

    CAS  PubMed  Google Scholar 

  • Kido H, Okumura Y, Yamada H, Le TQ, Yano M (2007) Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents. Curr Pharm Des 13:405–414

    CAS  PubMed  Google Scholar 

  • Kimura Y, Ito Y, Shimokawa K, Nishiyama Y, Nagata I, Kitoh J (1975) Temperature-sensitive virus derived from BHK cells persistently infected with HVJ (Sendai virus). J Virol 15:55–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiyotani K, Takao S, Sakaguchi T, Yoshida T (1990) Immediate protection of mice from lethal wild-type Sendai virus (HVJ) infections by a temperature-sensitive mutant, HVJpi, possessing homologous interfering capacity. Virology 177:65–74

    CAS  PubMed  Google Scholar 

  • Kiyotani K, Sakaguchi T, Kato A, Nagai Y, Yoshida T (2007) Paramyxovirus Sendai virus V protein counteracts innate virus clearance through IRF-3 activation, but not via interferon, in mice. Virology 359:82–91

    CAS  PubMed  Google Scholar 

  • Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43

    CAS  PubMed  Google Scholar 

  • Kolakofsky D, Bruschi A (1975) Antigenomes in Sendai virions and Sendai virus-infected cells. Virology 66:185–191

    CAS  PubMed  Google Scholar 

  • Kolakofsky D, Boy de la Tour E, Bruschi A (1974) Self-annealing of Sendai virus RNA. J Virol 14:33–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolokoltsov AA, Deniger D, Fleming EH, Roberts NJ Jr, Karpilow JM, Davey RA (2007) Small interfering RNA profiling reveals key role of clathrin-mediated endocytosis and early endosome formation for infection by respiratory syncytial virus. J Virol 81:7786–7800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu T, Takeuchi K, Yokoo J, Tanaka Y, Gotoh B (2000) Sendai virus blocks alpha interferon signaling to signal transducers and activators of transcription. J Virol 74:2477–2480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu T, Takeuchi K, Yokoo J, Gotoh B (2002) Sendai virus C protein impairs both phosphorylation and dephosphorylation processes of Stat1. FEBS Lett 511:139–144

    CAS  PubMed  Google Scholar 

  • Kondo T, Yoshida T, Miura N, Nakanishi M (1993) Temperature sensitive phenotype of a mutant Sendai virus strain is caused by its insufficient accumulation of the M protein. J Biol Chem 268:21924–21930

    CAS  PubMed  Google Scholar 

  • Koyama AH, Ogawa M, Kato A, Nagai Y, Adachi A (2001) Lack of apoptosis in Sendai virus-infected Hep-2 cells without participation of viral antiapoptosis gene. Microbes Infect 3:1115–1121

    CAS  PubMed  Google Scholar 

  • Koyama AH, Irie H, Kato A, Nagai Y, Adachi A (2003) Virus multiplicaiton and induction of apoptosis by Sendai virus: role of the C proteins. Microbes Infect 5:373–378

    CAS  PubMed  Google Scholar 

  • Kozak M (1984) Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res 12:3873–3893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozak M (1987) Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol 7:3438–3445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurotani A, Kiyotani K, Kato A, Shioda T, Sakai Y, Mizumoto K, Yoshida T, Nagai Y (1998) The Sendai virus, C proteins are categorically nonessential gene products but silencing their expression severely impairs viral replecation and pathogenesis. Genes Cells 3:111–124

    CAS  PubMed  Google Scholar 

  • Kuroya M, Ishida N, Shiratori T (1953) Newborn virus pneumonitis (type Sendai) II. Report: The isolation of a new virus possessing hemagglutinin activity. Yokohama Med Bull 4:217–233

    CAS  PubMed  Google Scholar 

  • Lamb RA, Choppin PW (1977a) The synthesis of Sendai virus polypeptides in infected cells. II. Instracellular distribution of polypeptides. Virology 81:371–381

    CAS  PubMed  Google Scholar 

  • Lamb RA, Choppin PW (1977b) The synthesis of Sendai virus polypeptides in infected cells. III. Phosphorylation of polypeptides. Virology 81:382–397

    CAS  PubMed  Google Scholar 

  • Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 5th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 1449–1496

    Google Scholar 

  • Lamb RA, Mahy BW, Choppin PW (1976) The synthesis of Sendai virus polypeptides in infected cells. Virology 69:116–131

    CAS  PubMed  Google Scholar 

  • Latorre P, Kolakofsky D, Curran J (1998) Sendai virus Y proteins are initiated by a ribosomal shunt. Mol Cell Biol 18:5021–5031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leyrer S, Neubert WJ, Sedlmeier R (1998) Rapid and efficient recovery of Sendai virus from cDNA: factors influencing recombinant virus rescue. J Virol Methods 75:47–58

    CAS  PubMed  Google Scholar 

  • Li HO, Zhu Y-F, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee Y-S, Fukumura M, Iida A, Kato T, Nagai Y, Hasegawa M (2000) A cytoplasmic RNA vector derived from non-transmissible Sendai virus with efficient gene transfer and expression. J Virol 74:6564–6569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Schmitt PT, Li Z, McCrory TS, He B, Schmitt AP (2009) Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol 83:7261–7272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C-C, Simonsen CC, Levinson AD (1984) Initiation of translation at internal AUG codons in mammalian cells. Nature (Lond) 309:82–85

    CAS  Google Scholar 

  • Loney C, Mottet-Osman G, Roux L, Bhella D (2009) Paramyxovirus ultrastructure and genome packaging: cryo-electron tomography of Sendai virus. J Virol 83:8191–8197. doi:10.1128/JVI.00693-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luque LE, Russell CJ (2007) Spring-loaded heptad repeat residues regulate the expression and activation of paramyxovirus fusion protein. J Virol 81:3130–3141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luque LE, Bridges OA, Mason JN, Boyd KL, Portner A, Russell CJ (2010) Residues in the heptad repeat a region of the fusion protein modulate the virulence of Sendai virus in mice. J Virol 84:810–821. doi:10.1128/JVI.01990-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyles DS, Rupprecht CE (2007) Rhabdoviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 5th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 1363–1408

    Google Scholar 

  • Markwell MA, Fox CF (1980) Protein–protein interactions within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking. J Virol 33:152–166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markwell MAK, Paulson JC (1980) Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proc Natl Acad Sci USA 77:5693–5697

    CAS  PubMed  Google Scholar 

  • Markwell MA, Portner A, Schwartz AL (1985) An alternative route of infection for viruses: entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc Natl Acad Sci USA 82:978–982

    CAS  PubMed  Google Scholar 

  • Marq J-B, Brini A, Kolakofsky D, Garcin D (2007) Targeting of the Sendai virus C protein to the plasma membrane via a peptide-only membrane anchor. J Virol 81:3187–3197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuoka Y, Curran J, Pelet T, Kolakofsky D, Ray R, Compans RW (1991) The P gene of human parainfluenza virus type 1 encodes P and C proteins but not a cysteine-rich V protein. J Virol 65:3406–3410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan C, Howe C (1968) Structure and development of viruses as observed in the electron microscope. IX. Entry of parainfluenza I (Sendai) virus. J Virol 2:1122–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mottet G, Roux L (1989) Budding efficiency of Sendai virus nucleocapsids: influence of size and ends of the RNA. Virus Res 14:175–187

    CAS  PubMed  Google Scholar 

  • Mottet-Osman G, Iseni F, Pelet T, Wiznerowics M, Garcin D, Roux L (2007) Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA analysis. J Virol 81:2861–2868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moyer SA, Baker SC, Lessard JL (1986) Tublin: a factor necessary for the synthesis of both Sendai virus and vesicular stomatitis virus RNAs. Proc Natl Acad Sci USA 83:5405–5409

    CAS  PubMed  Google Scholar 

  • Murphy AM, Grdzelishvili VZ (2009) Identification of Sendai virus L protein amino acid residues affecting viral mRNA cap methylation. J Virol 83:1669–1681. doi:10.1128/JVI.01438-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myers TM, Moyer SA (1997) An amino-terminal domain of the Sendai virus nucleocapsid protein is required for template function. J Virol 71:918–924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagai Y (1993) Protease-dependent virus tropism and pathogenicity. Trends Microbiol 1:81–87

    CAS  PubMed  Google Scholar 

  • Nagai Y (1995) Virus activation by host proteinases. A pivotal role in the spread of infection, tissue tropism and pathogenicity. Microbiol Immunol 39:1–9

    CAS  PubMed  Google Scholar 

  • Nagai Y (1999) Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding. Rev Med Virol 9:83–99

    CAS  PubMed  Google Scholar 

  • Nagai Y, Kato A (1999) Paramyxovirus reverse genetics is coming of age. Microbiol Immunol 43:613–624

    CAS  PubMed  Google Scholar 

  • Nagai Y, Kato A (2004) Accessory genes of the Paramyxoviridae, a large family of nonsegmented negative-strand and RNA viruses, as a focus of active investigation by reverse genetics. Curr Top Microbiol Immunol 283:197–248

    CAS  PubMed  Google Scholar 

  • Nagai Y, Yoshida T (1984) Viral pathogenesis: mechanism of acute and persistent infections with paramyxoviruses. Nagoya J Med Sci 46:1–17

    CAS  PubMed  Google Scholar 

  • Nagai Y, Ogura H, Klenk H-D (1976a) Studies on the assembly of the envelope of Newcastle disease virus. Virology 69:523–538

    CAS  PubMed  Google Scholar 

  • Nagai Y, Klenk H-D, Rott R (1976b) Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 72:494–508

    CAS  PubMed  Google Scholar 

  • Nagai Y, Hamaguchi M, Toyoda T, Yoshida T (1983a) The uncoating of paramyxoviruses may not require a low pH mediated step. Virology 130:263–268

    CAS  PubMed  Google Scholar 

  • Nagai Y, Yoshida T, Hamaguchi M, Nagura H, Hasegawa H, Yoshimura S, Watanabe K (1983b) Subcellular location of the major protein antigens of paramyxoviruses revealed by immunoperoxidase cytochemistry. Microbiol Immunol 27:531–545

    CAS  PubMed  Google Scholar 

  • Nagai Y, Inoue M, Iida A, Zhu Y-F, Hasegawa M, Kato A, Matano T (2007) Sendai virus engineering: from reverse genetics to vector development. In: Hefferon KL (ed) Virus expression vectors. Transworld Research Network, Kerala, pp 123–146

    Google Scholar 

  • Nagai Y, Takakura A, Irie T, Yonemitsu Y, Gotoh B (2011) Sendai virus evolution from mouse pathogen to a state-of-the-art tool in virus research and biotechnology. In: Samal SK (ed) The biology of paramyxoviruses. Caister Academic, Norfolk

    Google Scholar 

  • Nagata I, Kimura Y, Ito Y, Tanaka T (1972) Temperature-sensitive phenomenon of viral maturation observed in BHK cells persistently infected with HVJ. Virology 49:453–461

    CAS  PubMed  Google Scholar 

  • Nishimura K, Segawa H, Goto T, Morishita M, Masago A, Takahashi H, Ohmiya Y, Sakaguchi T, Asada M, Imamura T, Shimotono K, Takayama K, Yoshida T, Nakanishi M (2007) Persistent and stable gene expression by a cytoplasmic RNA replicon based on a noncytopathic variant Sendai virus. J Biol Chem 282:27383–27391

    CAS  PubMed  Google Scholar 

  • Nishio M, Nagata A, Tsurudome M, Ito M, Kawano M, Komada H, Ito Y (2004) Recombinant Sendai viruses with L1618V mutation in their L polymerase protein establish persistent infection, but not temperature sensitivity. Virology 329:289–301

    CAS  PubMed  Google Scholar 

  • Ogasawara T, Gotoh B, Suzuki H, Asaka J, Shimokata K, Rott R, Nagai Y (1992) Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J 11:467–472

    CAS  PubMed  Google Scholar 

  • Ogino T, Kobayashi M, Iwama M, Mizumoto K (2005) Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 280:4429–4435

    CAS  PubMed  Google Scholar 

  • Ohnishi Y, Shioda T, Nakayama K, Iwata S, Gotoh B, Hamaguchi M, Nagai Y (1995) A furin-defective cell line is able to process correctly the gp160 of human immunodeficiency virus type 1. J Virol 68:4075–4079

    Google Scholar 

  • Palese P, Zheng H, Engelhardt OG, Pleschka S, García-Sastre A (1996) Negative-strand RNA viruses: genetic engineering and applications. Proc Natl Acad Sci USA 93:11354–11358

    CAS  PubMed  Google Scholar 

  • Pennington TH, Pringle CR (1978) Negative strand viruses in enucleate cells. In: Mahy BWJ, Barry RD (eds) Negative strand viruses and the host cell. Academic, New York

    Google Scholar 

  • Peters K, Chattopadhyay S, Sen GC (2008) IRF-3 activation by Sendai virus infection is required for cellular apoptosis and avoidance of persistence. J Virol 82:3500–3508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71:1153–1162

    CAS  PubMed  Google Scholar 

  • Portner A, Murti KG (1986) Localization of P, NP, and M proteins on Sendai virus nucleocapsid using immunogold labeling. Virology 150:469–478

    CAS  PubMed  Google Scholar 

  • Portner A, Gupta KC, Seyer JM, Beachey EH, Kingsbury DW (1986) Localization and characterization of Sendai virus nonstructural C and C’ proteins by antibodies against synthetic peptides. Virus Res 6:109–121

    CAS  PubMed  Google Scholar 

  • Portner A, Murti KG, Morgan EM, Kingsbury DW (1988) Antibodies against Sendai virus L protein: distribution of the protein in nucleocapsids revealed by immunoelectron microscopy. Virology 163:236–239

    CAS  PubMed  Google Scholar 

  • Qanungo KR, Shaji D, Mathur M, Banerjee AK (2004) Two RNA polymerase complexes from vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA. Proc Natl Acad Sci USA 101:5952

    CAS  PubMed  Google Scholar 

  • Radoshitzky SR, Dong L, Chi X, Clester JC, Retterer C, Spurgers K, Kuhn JH, Sandwick S, Ruthel G, Kota K, Bolts D, Warren T, Kranzusch PJ, Whelan SPJ, Bavari S (2010) Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin. J Virol 84:10569–10580. doi:10.1128/JVI.00103-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47

    CAS  PubMed  Google Scholar 

  • Randall RE, Russell WC (1991) Paramyxovirus persistence: consequences for host and virus. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 299–321

    Google Scholar 

  • Re GG (1991) Deletion mutants of paramyxoviruses. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 275–298

    Google Scholar 

  • Re GG, Kingsbury DW (1986) Nucleotide sequences that affect replicative and transcriptional efficiencies of Sendai virus deletion mutants. J Virol 58:578–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rima BK, Martin SJ (1976) Persistent infection of tissue culture cells by RNA viruses. Med Microbiol Immunol 162:89–118

    CAS  PubMed  Google Scholar 

  • Roux L, Holland JJ (1979) Role of defective interfering particles of Sendai virus in persistent infections. Virology 93:91–103

    CAS  PubMed  Google Scholar 

  • Roux L, Holland JJ (1980) Viral genome synthesis in BHK-21 cells persistently infected with Sendai virus. Virology 100:53–64

    CAS  PubMed  Google Scholar 

  • Ryan KW, Morgan EM, Portner A (1991) Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain. Virology 180:126–134

    CAS  PubMed  Google Scholar 

  • Sakaguchi T, Toyoda T, Gotoh B, Inocencio NM, Kuma K, Miyata T, Nagai Y (1989) Newcastle disease virus evolution. I. Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene. Virology 169:260–272

    CAS  PubMed  Google Scholar 

  • Sakaguchi T, Kiyotani K, Kato A, Asakawa M, Fujii Y, Nagai Y, Yoshida T (1997) Phosphorylation of the Sendai virus M protein is not essential for virus replication either in vitro or in vivo. Virology 235:360–366

    CAS  PubMed  Google Scholar 

  • Sakaguchi T, Uchiyama T, Huang C, Fukuhara N, Kiyotani K, Nagai Y, Yoshida T (2002) Alteration of Sendai virus morphogenesis and nucleocapsid incorporation due to mutation of cycteine residues of the matrix protein. J Virol 76:1682–1690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi T, Kato A, Sugahara F, Shimazu Y, Inoue M, Kiyotani K, Nagai Y, Yoshida T (2005) AIP1/Alix is a binding partner of Sendai virus C protein and facilitates virus budding. J Virol 79:8933–8941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi T, Kato A, Kiyotani K, Yoshida T, Nagai Y (2008) Studies on the paramyxovirus accessory genes by reverse genetics in the Sendai virus–mouse system. Proc Jpn Acad Ser B Phys Biol Sci 84:439–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderson CM, Avalos R, Kundu A, Nayak DP (1995) Interaction of Sendai virus F, HN, and M proteins with host cytoskeletal and lipid components in Sendai virus-infected BHK cells. Virology 209:701–707

    CAS  PubMed  Google Scholar 

  • Scheid A, Choppin PW (1974) Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57:475–490

    CAS  PubMed  Google Scholar 

  • Schmitt AP, Leser GP, Morita E, Sundquist WI, Lamb RA (2005) Evidence for a new viral late domain core sequence, FPIV, necessary for budding of a paramyxovirus. J Virol 79:2988–2997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnell MJ, Mebatsion T, Conzelmann K-K (1994) Infectious rabies virus from cloned cDNA. EMBO J 13:4195–4203

    CAS  PubMed  Google Scholar 

  • Segawa H, Yamashita T, Kawakita M, Taira H (2000) Functional analysis of the individual oligosaccharide chains of Sendai virus fusion protein. J Biochem 128:65–72

    CAS  PubMed  Google Scholar 

  • Segawa H, Inakawa A, Yamashita T, Taira H (2003) Functional analysis of individual oligosaccharide chains of Sendai virus hemagglutinin-neuraminidase protein. Biosci Biotechnol Biochem 67:592–598

    CAS  PubMed  Google Scholar 

  • Shimazu Y, Takao SI, Irie T, Kiyotani K, Yoshida T, Sakaguchi T (2008) Contribution of the leader sequence to homologous viral interference among Sendai virus strains. Virology 372:64–71

    CAS  PubMed  Google Scholar 

  • Shimizu K, Ishida N (1975) The smallest protein of Sendai virus: its candidate function of binding nucleocapsid to envelope. Virology 67:427–437

    CAS  Google Scholar 

  • Shimizu YK, Shimizu K, Ishida N, Homma M (1976) On the study of Sendai virus hemolysis. II. Morphological study of envelope fusion and hemolysis. Virology 71:48–60

    CAS  PubMed  Google Scholar 

  • Shioda T, Hidaka Y, Kanda T, Shibuta H, Nomoto A, Iwasaki K (1983) Sequence of 3,687 nt from the 3′ end of Sendai virus genome RNA and the predicted amino acid sequences of viral NP, P and C proteins. Nucleic Acids Res 11:7317–7330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shioda T, Iwasaki K, Shibuta H (1986) Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequence of the F, HN, and L proteins. Nucleic Acids Res 14:1545–1563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirogane Y, Takeda T, Iwasaki M, Ishiguro N, Takeuchi H, Nakatsu Y, Tahara M, Kikuta H, Yanagi Y (2008) Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol 82:8942–8946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smallwood S, Ryan KW, Moyer SA (1994) Deletion analysis defines a carboxyl-proximal region of Sendai virus P protein that binds to the polymerase L protein. Virology 202:154–163

    CAS  PubMed  Google Scholar 

  • Smallwood S, Hövel T, Neubert WJ, Moyer SA (2002a) Different substitutions at conserved amino acids in domains II and III in the Sendai L RNA polymerase protein inactivate viral RNA synthesis. Virology 304:135–145

    CAS  PubMed  Google Scholar 

  • Smallwood S, Çevik B, Moyer SA (2002b) Intragenic complementation and oligomerization of the L subunit of the Sendai virus RNA polymerase. Virology 304:235–245

    CAS  PubMed  Google Scholar 

  • Sriwilaijaroen N, Kondo S, Yagi H, Wilairat P, Hiramatsu H, Ito M, Ito Y, Kato K, Suzuki Y (2009) Analysis of N-glycans in embryonated chicken egg choriollantoic and amniotic cells responsible for binding and adaptation of human and avian influenza viruses. Glycoconj J 26:433–443

    CAS  PubMed  Google Scholar 

  • Sugahara F, Uchiyama T, Watanabe H, Shimazu Y, Kuwayama M, Fujii Y, Kiyotani K, Adachi A, Kohno N, Yoshida T, Sakaguchi T (2004) Paramyxovirus Sendai virus-like particle formation by expression of multiple viral proteins and acceleration of its release by C protein. Virology 325:1–10

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Suzuki T, Matsumoto M (1983) Isolation and characterization of receptor sialoglycoprotein for hemagglutinating virus of Japan (Sendai virus) from bovine erythrocyte membrane. J Biochem (Tokyo) 93:1621–1633

    CAS  Google Scholar 

  • Suzuki Y, Suzuki T, Matsunaga M, Matsumoto M (1985) Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus. J Biochem (Tokyo) 97:1189–1199

    CAS  Google Scholar 

  • Suzuki H, Harada A, Hayashi Y, Wada K, Asaka J, Gotoh B, Ogasaweara T, Nagai Y (1991) Primary structure of the virus activating protease from chick embryo; its identity with the blood clotting factor Xa. FEBS Lett 283:281–285

    CAS  PubMed  Google Scholar 

  • Takimoto T, Bousse T, Coronel EC, Scroggs RA, Portner A (1998) Cytoplasmic domain of Sendai virus HN protein contains a specific sequence required for its incorporation into virions. J Virol 72:9747–9754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura T, Yamashita T, Segawa H, Taira H (2002) N-linked oligosaccharide chains of Sendai virus fusion protein determine the interaction with endoplasmic reticulum molecular chaperones. FEBS Lett 513:153–158

    CAS  PubMed  Google Scholar 

  • Tapparel C, Hausmann S, Pelet T, Curran J, Kolakofsky D, Roux L (1997) Inhibition of Sendai virus genome replication due to promoter-increased selectivity: a possible role for the accessory C proteins. J Virol 71:9588–9599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tapparel C, Maurice D, Roux L (1998) The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif, (GNNNNN)3, is essential for replication. J Virol 72:3117–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tarbouriech N, Curran J, Ebel C, Ruigrok RWH, Burmeister WP (2000a) On the domain structure and the polymerization state of the Sendai virus P protein. Virology 266:99–109

    CAS  PubMed  Google Scholar 

  • Tarbouriech N, Curran J, Ruigrok RWH, Burmeister WP (2000b) Tetrameric coiled coil domain of Sendai virus phosphoprotein. Nat Struct Biol 7:777–781

    CAS  PubMed  Google Scholar 

  • Tashiro M, Yokogoshi Y, Tobita K, Seto JT, Rott R, Kido H (1992) Tryptase Clara, an activating protease for Sendai virus in rat lungs, is involved in pneumopathogenicity. J Virol 66:7211–7216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toyoda T, Sakaguchi T, Imai K, Inocencio NM, Gotoh B, Hamaguchi M, Nagai Y (1987) Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology 158:242–247

    CAS  PubMed  Google Scholar 

  • Toyoda T, Sakaguchi T, Hirota H, Gotoh B, Kuma K, Miyata T, Nagai Y (1989) Newcastle disease virus evolution. II. Lack of gene recombination in generating virulent and avirulent strains. Virology 169:273–282

    CAS  PubMed  Google Scholar 

  • Tozawa H, Watanabe M, Ishida N (1973) Structural components of Sendai virus. Serological and physicochemical characterization of hemagglutinin subunit associated with neuraminidase activity. Virology 55:242–253

    CAS  PubMed  Google Scholar 

  • Vidal S, Curran J, Kolakofsky D (1990a) Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J Virol 64:239–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vidal S, Curran J, Kolakofsky D (1990b) A stuttering model for paramyxovirus P mRNA editing. EMBO J 9:2017–2022

    CAS  PubMed  Google Scholar 

  • Watanabe R, Leser GP, Lamb RA (2011) Influenza virus is not restricted by tetherin whereas influenza VLP production is restricted by teterin. Virology 417:50–56

    CAS  PubMed  Google Scholar 

  • Whelan SP, Wertz GW (2002) Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome. Proc Natl Acad Sci USA 99:9178–9183

    CAS  PubMed  Google Scholar 

  • Whelan SPJ, Barr JN, Wertz GW (2004) Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol 283:61–119

    CAS  PubMed  Google Scholar 

  • Wiegand MA, Bossow S, Schlecht S, Neubert WJ (2007) De novo synthesis of N and P proteins as a key step in Sendai gene expression. J Virol 81:13835–13844. doi:10.1128/JVI.00914-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada H, Hayata S, Omata-Yamada T, Taira H, Mizumoto K, Iwasaki K (1990) Association of the Sendai virus C protein with nucleocapsids. Arch Virol 113:245–253

    CAS  PubMed  Google Scholar 

  • Yoshida T, Nagai Y, Yoshii S, Maeno K, Matsumoto T, Hoshino M (1976) Membrane (M) protein of HVJ (Sendai virus): its role in virus assembly. Virology 71:143–161

    CAS  PubMed  Google Scholar 

  • Yoshida T, Nagai Y, Maeno K, Iinuma M, Hamaguchi M, Matsumoto T (1979) Studies on the role of M protein in virus assembly using a TS mutant of HVJ (Sendai virus). Virology 92:139–154

    CAS  PubMed  Google Scholar 

  • Yoshida T, Hamaguchi M, Naruse H, Nagai Y (1982) Persistent infection by a temperature-sensitive mutant isolated from a Sendai virus (HVJ) carrier culture: its initiation and maintenance without aid of defective interfering particles. Virology 120:329–339

    CAS  PubMed  Google Scholar 

  • Yoshima H, Nakanishi M, Okada Y, Kobata A (1981) Carbohydrate structures of HVJ (Sendai virus) glycoproteins. J Biol Chem 256:5355–5361

    CAS  PubMed  Google Scholar 

  • Young DF, Didcock L, Goodbourn S, Randall RE (2000) Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 269:383–390

    CAS  PubMed  Google Scholar 

  • Youngner JS, Preble OT (1980) Viral persistence: evolution of viral populations. In: Frankel-Conrat H, Wagner RR (eds) Comprehensive virology, vol 16. Plenum, New York/London, pp 73–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Nagai, Y., Kato, A. (2013). Sendai Virus Biology and Engineering Leading up to the Development of a Novel Class of Expression Vector. In: Nagai, Y. (eds) Sendai Virus Vector. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54556-9_2

Download citation

Publish with us

Policies and ethics