Functional Craniology, Human Evolution, and Anatomical Constraints in the Neanderthal Braincase

  • Emiliano BrunerEmail author
Part of the Replacement of Neanderthals by Modern Humans Series book series (RNMH)


Neanderthals and modern humans share a similar cranial capacity but different neurocranial organization. Recently, digital anatomy and computed morphometrics have generated a revolution in functional craniology, allowing quantitative analyses to investigate integration and correlation among the anatomical elements, both in ontogeny and phylogeny. Despite some derived endocranial traits, Neanderthals display a general plesiomorph organization of the braincase. Geometrical and structural constraints between the endocranial soft and hard tissues may have induced morphogenetic limits to the growth and developmental processes. At the same time, heat production associated with a large cranial capacity and a plesiomorph vascular system may have also involved thermal limits. Although in paleontology morphogenetic and metabolic processes can only be investigated through indirect evidence, such hypotheses merit attention when considering the patterns of brain evolution in the genus Homo. It is tempting to wonder whether these limits may be also related to possible factors associated with the extinction of Neanderthals.


Brain evolution Encephalization Neurocranial integration Paleoneurology 



I am grateful to Naomichi Ogihara for inviting me to join his team on Neanderthal brain evolution, and to Takeru Akazawa for coordinating this project. Thanks to Osamu Kondo, Hideki Amano, Yasushi Kobayashi, Hiroki Tanabe, and Daisuke Kubo, for their contribution and involvement. Thanks to José Manuel de la Cuétara for his collaboration on the study of the endocranial heat dissipation patterns and for his comments on this manuscript, to Giorgio Manzi for his help on the epigenetic traits, and to Shahram Sherkat and Simone Mantini for their participation in the study of the middle meningeal vessels. This paper is supported by the Proyecto Atapuerca (Spain) and by the Italian Institute of Anthropology (Italy).


  1. Anton SC, Jaslow CR, Swartz SM (1992) Sutural complexity in artificially deformed human (Homo sapiens) crania. J Morphol 214:321–332CrossRefGoogle Scholar
  2. Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34CrossRefGoogle Scholar
  3. Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350CrossRefGoogle Scholar
  4. Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull. J Anat 209:637–654CrossRefGoogle Scholar
  5. Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle craneal fossa and the origin of modern humans. Anat Rec 291:130–140CrossRefGoogle Scholar
  6. Bastir M, Rosas A, Gunz P, Peña-Melian A, Manzi G, Harvati K, Kruszynski R, Stringer C, Hublin JJ (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588CrossRefGoogle Scholar
  7. Bertolizio G, Mason L, Bissonnette B (2011) Brain temperature: heat production, elimination and clinical relevance. Paediatr Anaesth 21:347–358CrossRefGoogle Scholar
  8. Bookstein FL, Gunz P, Mitteroecker P, Prossinger H, Schaefer K, Seidler H (2003) Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol 44:167–187CrossRefGoogle Scholar
  9. Brengelmann GL (1993) Specialized brain cooling in humans? FASEB J 7:1148–1153Google Scholar
  10. Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303CrossRefGoogle Scholar
  11. Bruner E (2008) Comparing endocranial form and shape differences in modern humans and Neandertal: a geometric approach. PaleoAnthropology 2008:93–106Google Scholar
  12. Bruner E (2010) Morphological differences in the parietal lobes within the human genus: a neurofunctional perspective. Curr Anthropol 51:S77–S88CrossRefGoogle Scholar
  13. Bruner E (2013) The species concept as a cognitive tool for biological anthropology. Am J Primatol 75:10–15CrossRefGoogle Scholar
  14. Bruner E. Manzi G (2006) Saccopastore 1: the earliest Neanderthal? A new look at an old cranium. In: Harvati K, Harrison T (eds) Neanderthals revisited: new approaches and perspectives. Springer, The Netherlands, pp 23–36Google Scholar
  15. Bruner E, Holloway R (2010) Bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146CrossRefGoogle Scholar
  16. Bruner E, Jacobs HIL (2013) Alzheimer’s Disease: the downside of a highly evolved parietal lobe? J Alzheimer’s Disease 35:227–240Google Scholar
  17. Bruner E, Manzi G (2005) CT-based description and phyletic evaluation of the archaic human calvarium from Ceprano, Italy. Anat Rec 285A:643–658CrossRefGoogle Scholar
  18. Bruner E, Manzi G (2008) Paleoneurology of an early Neanderthal: endocranial size, shape, and features of Saccopastore 1. J Hum Evol 54:729–742CrossRefGoogle Scholar
  19. Bruner E, Pearson O (2013) Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol Sci 121:31–41CrossRefGoogle Scholar
  20. Bruner E, Ripani M (2008) A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137:30–40CrossRefGoogle Scholar
  21. Bruner E, Sherkat S (2008) The middle meningeal artery: from clinics to fossils. Childs Nerv Syst 24:1289–1298CrossRefGoogle Scholar
  22. Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neanderthal and modern lineages. Proc Natl Acad Sci U S A 100:15335–15340CrossRefGoogle Scholar
  23. Bruner E, Mantini S, Perna A, Maffei C, Manzi G (2005) Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans. Eur J Morphol 42:217–224CrossRefGoogle Scholar
  24. Bruner E, Manzi G, Holloway RL (2006) Krapina and Saccopastore: Endocranial morphology in the pre-Wurmian Europeans. Period Biolog 108:433–441Google Scholar
  25. Bruner E, Mantini S, Ripani M (2009) Landmark-based analysis of the morphological relationship between endocranial shape and traces of the middle meningeal vessels. Anat Rec 292:518–527CrossRefGoogle Scholar
  26. Bruner E, de la Cuétara JM, Holloway R (2011a) A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294:1548–1556CrossRefGoogle Scholar
  27. Bruner E, Mantini S, Musso F, de la Cuétara JM, Ripani M, Sherkat S (2011b) The evolution of the meningeal vascular system in the human genus: from brain shape to thermoregulation. Am J Hum Biol 23:35–43CrossRefGoogle Scholar
  28. Bruner E, De la Cuétara M, Musso F (2012) Quantifying patterns of endocranial heat distribution: brain geometry and thermoregulation. Am J Hum Biol 24:753–762CrossRefGoogle Scholar
  29. Cabanac M (1993) Selective brain cooling in humans: ‘fancy’ or fact? FASEB J 7:1143–1146Google Scholar
  30. Churchill SE (1998) Cold adaptation, heterochrony, and Neandertals. Evol Anthropol 7:46–60CrossRefGoogle Scholar
  31. Churchill SE (2006) Bioenergetic perspectives on Neanderthal thermoregulatory and activity budgets. In: Harvati K, Harrison T (eds) Neanderthals revisited: new approaches and perspectives. Springer, Dordrecht, pp 113–134Google Scholar
  32. D’AW T (1942) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  33. Dean D, Hublin JJ, Holloway R, Ziegler R (1998) On the phylogenetic position of the pre-Neandertal specimen from Reilingen, Germany. J Hum Evol 34:485–508CrossRefGoogle Scholar
  34. Di Ieva A, Bruner E, Davidson J, Pisano P, Haider T, Stone SS, Cusimano MD, Tschabitscher M, Grizzi F (2013) Cranial sutures: a multidisciplinary review. Childs Nerv Syst 29:893–905Google Scholar
  35. Enlow DH (1990) Facial Growth. WB Saunders Company, PhiladelphiaGoogle Scholar
  36. Falk D (1990) Brain evolution in Homo: the “radiator” theory. Behav Brain Sci 13:333–344CrossRefGoogle Scholar
  37. Falk D (1993) Meningeal arterial pattern in great apes: implication for hominoid vascular evolution. Am J Phys Anthropol 92:81–97CrossRefGoogle Scholar
  38. Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41:587–640CrossRefGoogle Scholar
  39. Grimaud-Hervé D (1997) L’évolution de l’encéphale chez l’Homo erectus et l’Homo sapiens. CNRS Eds, ParisGoogle Scholar
  40. Gunz P, Harvati K (2007) The Neanderthal "chignon": variation, integration, and homology. J Hum Evol 52:262–274CrossRefGoogle Scholar
  41. Gunz P, Mitteroecker P, Neubauer S, Weber GW, Bookstein FL (2009) Principles for the virtual reconstruction of hominin crania. J Hum Evol 57:48–62CrossRefGoogle Scholar
  42. Gunz P, Neubauer S, Maureille B, Hublin JJ (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922CrossRefGoogle Scholar
  43. Hauser G, De Stefano GF (1989) Epigenetic variants of the human skull. Schweizerbart, StuttgartGoogle Scholar
  44. Holliday TW (2006) Neanderthals and modern humans: an example of mammalian syngameon. In: Harvati K, Harrison T (eds) Neanderthals revisited: new approaches and perspectives. Springer, The Netherlands, pp 281–298Google Scholar
  45. Holloway RL (1980) Indonesian “Solo” (Ngandong) endocranial reconstructions: some preliminary observations with Neanderthal and Homo erectus groups. Am J Phys Anthropol 53:285–295CrossRefGoogle Scholar
  46. Holloway RL (1981) Volumetric and asimmetry determinations on recent hominid endocasts: Spy I and Spy II, Djebel Ihroud I, and the Sale´ Homo erectus specimen. With some notes on Neandertal brain size. Am J Phys Anthropol 55:385–393CrossRefGoogle Scholar
  47. Holloway RL, Broadfiled DC, Yuan MS (2004) The human fossil record, vol 3: brain endocast. Wiley, HobokenCrossRefGoogle Scholar
  48. Hublin JJ (2009) The origin of Neandertals. Proc Natl Acad Sci U S A 106:16022–16027CrossRefGoogle Scholar
  49. Karbowski J (2009) Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size. J Comput Neurosci 27:415–436CrossRefGoogle Scholar
  50. Leonard WR, Snodgrass JJ, Robertson ML (2007) Effects of brain evolution on human nutrition and metabolism. Annu Rev Nutr 27:311–327CrossRefGoogle Scholar
  51. Lieberman DE, Ross C, Ravosa M (2000) The primate cranial base: ontogeny function and integration. Yearb Phys Anthropol 43:117–169CrossRefGoogle Scholar
  52. Lieberman DE, McBratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci U S A 99:1134–1139CrossRefGoogle Scholar
  53. Manzi G (2003) “Epigenetic” cranial traits, Neandertals and the origin of Homo sapiens. Riv Antropol 81:57–68Google Scholar
  54. Manzi G, Vienna A, Hauser G (1996) Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neandertals. J Hum Evol 30:511–527CrossRefGoogle Scholar
  55. Masters MP (2012) Relative size of the eye and orbit: an evolutionary and craniofacial constraint model for examining the etiology and disparate incidence of juvenile-onset myopia in humans. Med Hypotheses 78:649–656CrossRefGoogle Scholar
  56. McCarthy RC (2001) Anthropoid cranial base architecture and scaling relationships. J Hum Evol 40:41–66CrossRefGoogle Scholar
  57. McGhee GR (2006) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, New YorkCrossRefGoogle Scholar
  58. Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292CrossRefGoogle Scholar
  59. Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255CrossRefGoogle Scholar
  60. Neubauer S, Gunz P, Hublin JJ (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566CrossRefGoogle Scholar
  61. O’Laughlin VD (2004) Effects of different kinds of cranial deformation on the incidence of Wormian bones. Am J Phys Anthropol 123:146–155CrossRefGoogle Scholar
  62. O’Loughlin VD (1996) Comparative endocranial vascular changes due to craniosynostosis and artificial cranial deformation. Am J Phys Anthropol 101:369–385CrossRefGoogle Scholar
  63. Pearce E, Stringer C, Dunbar RIM (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc R Soc B 280:20130168Google Scholar
  64. Ponce de León MS, Zollikofer CPE (2001) Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412:534–538CrossRefGoogle Scholar
  65. Rango M, Arighi A, Bresolin N (2012) Brain temperature: what do we know? Neuro Report 23:483–487Google Scholar
  66. Richtsmeier JT, Aldridge K, de Leon VB, Panchal J, Kane AA, Marsh JL, Yan P, Cole TM (2006) Phenotypic integration of neurocranium and brain. J Exp Zool 306B:360–378CrossRefGoogle Scholar
  67. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132CrossRefGoogle Scholar
  68. Rosas A, Bastir M (2002) Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am J Phys Anthropol 117:236–245CrossRefGoogle Scholar
  69. Rosas A, Bastir M, Martínez-Maza C, García-Tabernero A, Lalueza-Fox C (2006) Inquires into Neandertal craniofacial development and evolution: “accretion” versus “organismic” models. In: Harvati K, Harrison T (eds) Neanderthals revisited: new approaches and perspectives. Springer, The Netherlands, pp 37–70Google Scholar
  70. Sergi S (1934) Ossicini fontanellari della regione del lambda nel cranio di Saccopastore e nei crani neandertaliani. Riv Antropol 30:101–112Google Scholar
  71. Sergi S (1944) Craniometria e craniografia del primo paleantropo di Saccopastore. Ricerche di Morfologia 20–21:733–791Google Scholar
  72. Sergi S (1948) L’uomo di Saccopastore. Paleontographia Italica XLII:25–164Google Scholar
  73. Shea BT (1992) Developmental perspective on size change and allometry in evolution. Evol Anthropol 1:125–134CrossRefGoogle Scholar
  74. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  75. Slice DE (2004) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum, New YorkGoogle Scholar
  76. Spoor F, Jeffery N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary studies. J Anat 197:61–76CrossRefGoogle Scholar
  77. Sukstanskii AL, Yablonskiy DA (2006) Theoretical model of temperature regulation in the brain during changes in functional activity. Proc Natl Acad Sci U S A 103:12144–12149CrossRefGoogle Scholar
  78. Tattersall I (2007) Neanderthals, Homo sapiens, and the question of species in paleoanthropology. J Anthropol Sci 85:139–146Google Scholar
  79. Van Leeuwen GM, Hand JW, Lagendijk JW, Azzopardi DV, Edwards AD (2000) Numerical modeling of temperature distributions within the neonatal head. Pediatr Res 48:351–356CrossRefGoogle Scholar
  80. Vandermeersch B, Garralda MD (2011) Neanderthal geographical and chronological variation. In: Condemi S, Weniger GC (eds) Continuity and discontinuity in the peopling of Europe. Springer, Dordrecht, pp113–125Google Scholar
  81. Weaver TD (2009) The meaning of the Neandertal skeletal morphology. Proc Natl Acad Sci U S A 106:16028–16033CrossRefGoogle Scholar
  82. Weber GW, Bookstein FL (2011) Virtual anthropology: a guide to a new interdisciplinary field. Springer, WienCrossRefGoogle Scholar
  83. White CD (1996) Sutural effects of fronto-occipital cranial modification. Am J Phys Anthropol 100:397–410CrossRefGoogle Scholar
  84. Zenker W, Kubik S (1996) Brain cooling in humans – anatomical considerations. Anat Embryol 193:1–13CrossRefGoogle Scholar
  85. Zhu M, Ackerman JJH, Sukstanskii AL, Yablonskiy DA (2006) How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. J Appl Physiol 101:1481–1488CrossRefGoogle Scholar
  86. Zollikofer CPE, Ponce de León MS (2005) Virtual reconstruction: a primer in computer-assisted paleontology and biomedicine. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain

Personalised recommendations