Skip to main content

Introduction

  • Chapter
  • First Online:
  • 528 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The construction of the quantum chromo dynamics and the electro weak theory with three generations of fermions lead to the establishment of the standard model (SM) of particle physics. The SM has been able to describe consistently many data from the accelerator experiments, and all particles except the Higgs boson within the model have been discovered so far.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.N. Yang, R. Mills, Phys. Rev. 96, 191 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Gell-Mann, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  3. M.Y. Han, Y. Nambu, Phys. Rev. 139, B1006 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  5. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  6. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  7. P.W. Higgs, Phys. Lett. 12, 132 (1964)

    Article  ADS  Google Scholar 

  8. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  9. P.W. Higgs, Phys. Rev. 145, 1156 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  10. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  11. T.W.B. Kibble, Phys. Rev. 155, 1554 (1967)

    Article  ADS  Google Scholar 

  12. Y. Fukuda et al., Super-Kamiokande Collaboration. Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  13. A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (JETP Lett. 5, 24) (1967)

    Google Scholar 

  14. F. Zwicky, Astrophys. J. 86, 217 (1937)

    Article  ADS  MATH  Google Scholar 

  15. M. Davis, G. Efstathiou, C.S. Frenk, S.D.M. White, Astrophys. J. 292, 371 (1985)

    Article  ADS  Google Scholar 

  16. D. Clowe et al., Astrophys. J. 648, L109 (2006)

    Article  ADS  Google Scholar 

  17. A.G. Riess et al., Supernova Search Team. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  18. S. Perlmutter et al., Supernova Cosmology Project. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  19. G.W. Bennett et al., Muon G-2 Collaboration. Phys. Rev. D 73, 072003 (2006)

    Article  ADS  Google Scholar 

  20. V.M. Abazov et al., D0 Collaboration, Phys. Rev. Lett. 105, 081801 (2010)

    Google Scholar 

  21. V.M. Abazov et al., D0 Collaboration. Phys. Rev. D 82, 032001 (2010)

    Article  ADS  Google Scholar 

  22. J. Wess, B. Zumino, Phys. Lett. B49, 52 (1974)

    Article  ADS  Google Scholar 

  23. H.E. Haber, G.L. Kane, Phys. Rept. 117, 75 (1985)

    Article  ADS  Google Scholar 

  24. J.F. Gunion, H.E. Haber, Nucl. Phys. B 272, 1 (1986)

    Article  ADS  Google Scholar 

  25. S.P. Martin, arXiv:hep-ph/9709356

    Google Scholar 

  26. H. Baer, X. Tata, Weak Scale Supersymmetry (Cambridge Univ, Press , 2006)

    Book  MATH  Google Scholar 

  27. G. Aad et al., ATLAS Collaboration. Phys. Rev. Lett. 106, 131802 (2011)

    Article  ADS  Google Scholar 

  28. G. Aad et al., ATLAS Collaboration. Phys. Lett. B 701, 186 (2011)

    Article  ADS  Google Scholar 

  29. G. Aad et al., ATLAS Collaboration, arXiv:1110.6189 [hep-ex]

    Google Scholar 

  30. V. Khachatryan et al., CMS Collaboration. Phys. Lett. B 698, 196 (2011)

    Article  ADS  Google Scholar 

  31. V. Khachatryan et al., CMS Collaboration, arXiv:1111.2733 [hep-ex]

    Google Scholar 

  32. F. Gabbiani, E. Gabrielli, A. Masiero, L. Silvestrini, Nucl. Phys. B 477, 321 (1996)

    Article  ADS  Google Scholar 

  33. G. Bhattacharyya, arXiv:hep-ph/9709395

    Google Scholar 

  34. H.K. Dreiner, arXiv:hep-ph/9707435

    Google Scholar 

  35. R. Barbier et al., Phys. Rept. 420, 1 (2005)

    Article  ADS  Google Scholar 

  36. M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005)

    Article  ADS  Google Scholar 

  37. W. Bernreuther, M. Suzuki, Rev. Mod. Phys. 63, 313 (1991); Erratum-ibid. 64, 633 (1992)

    Google Scholar 

  38. I.B. Khriplovich, S.K. Lamoreaux, CP Vioaltion Without Strangeness (Springer, Berlin, 1997)

    Book  Google Scholar 

  39. J.S.M. Ginges, V.V. Flambaum, Phys. Rept. 397, 63 (2004)

    Article  ADS  Google Scholar 

  40. M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005)

    Article  ADS  MATH  Google Scholar 

  41. T. Fukuyama, Int. J. Mod. Phys. A 27, 1230015 (2012)

    Article  ADS  Google Scholar 

  42. R. Barbieri, A. Masiero, Nucl. Phys. B 267, 679 (1986)

    Article  ADS  Google Scholar 

  43. R.M. Godbole, S. Pakvasa, S.D. Rindani, X. Tata, Phys. Rev. D 61, 113003 (2000)

    Article  ADS  Google Scholar 

  44. S.A. Abel, A. Dedes, H.K. Dreiner, JHEP 0005, 13 (2000)

    Article  ADS  Google Scholar 

  45. D. Chang, W.-F. Chang, M. Frank, W.-Y. Keung, Phys. Rev. D 62, 095002 (2000)

    Article  ADS  Google Scholar 

  46. P. Herczeg, Phys. Rev. D 61, 095010 (2000)

    Article  ADS  Google Scholar 

  47. A. Faessler, T. Gutsche, S. Kovalenko, V. E. Lyubovitskij, Phys. Rev. D 73, 114023

    Google Scholar 

  48. A. Faessler, T. Gutsche, S. Kovalenko, V.E. Lyubovitskij, Phys. Rev. D 74, 074013 (2006)

    Article  ADS  Google Scholar 

  49. K. Choi, E.J. Chun, K. Hwang, Phys. Rev. D 63, 013002 (2000)

    Article  ADS  Google Scholar 

  50. Y.Y. Keum, O.C.W. Kong, Phys. Rev. Lett. 86, 393 (2001)

    Article  ADS  Google Scholar 

  51. Y.Y. Keum, O.C.W. Kong, Phys. Rev. D 63, 113012 (2001)

    Article  ADS  Google Scholar 

  52. C.-C. Chiou, O.C.W. Kong, R.D. Vaidya, Phys. Rev. D 76, 013003 (2007)

    Article  ADS  Google Scholar 

  53. N. Yamanaka, T. Sato, T. Kubota, Phys. Rev. D 85, 117701 (2012)

    Article  ADS  Google Scholar 

  54. N. Yamanaka, Phys. Rev. D 85, 115012 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yamanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yamanaka, N. (2014). Introduction. In: Analysis of the Electric Dipole Moment in the R-parity Violating Supersymmetric Standard Model. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54544-6_1

Download citation

Publish with us

Policies and ethics